Ion fluxes through nanopores and transmembrane channels

被引:32
作者
Bordin, J. R. [1 ]
Diehl, A. [2 ]
Barbosa, M. C.
Levin, Y.
机构
[1] Univ Fed Rio Grande do Sul, Inst Fis, Programa Posgrad Fis, BR-91501970 Porto Alegre, RS, Brazil
[2] Univ Fed Pelotas, Inst Fis & Matemat, Dept Fis, BR-96010900 Pelotas, RS, Brazil
来源
PHYSICAL REVIEW E | 2012年 / 85卷 / 03期
关键词
CANONICAL MOLECULAR-DYNAMICS; GRADIENT-DRIVEN DIFFUSION; LENNARD-JONES FLUIDS; NERNST-PLANCK THEORY; GRAMICIDIN CHANNEL; BROWNIAN DYNAMICS; CARBON NANOTUBES; COMPUTATIONAL MODELS; CONTINUUM-THEORIES; PERMEATION;
D O I
10.1103/PhysRevE.85.031914
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We introduce an implicit solvent Molecular Dynamics approach for calculating ionic fluxes through narrow nanopores and transmembrane channels. The method relies on a dual-control-volume grand-canonical molecular dynamics (DCV-GCMD) simulation and the analytical solution for the electrostatic potential inside a cylindrical nanopore recently obtained by Levin [Europhys. Lett. 76, 163 (2006)]. The theory is used to calculate the ionic fluxes through an artificial transmembrane channel which mimics the antibacterial gramicidin A channel. Both current-voltage and current-concentration relations are calculated under various experimental conditions. We show that our results are comparable to the characteristics associated to the gramicidin A pore, especially the existence of two binding sites inside the pore and the observed saturation in the current-concentration profiles.
引用
收藏
页数:7
相关论文
共 52 条
[1]   Imaging α-hemolysin with molecular dynamics:: Ionic conductance, osmotic permeability, and the electrostatic potential map [J].
Aksimentiev, A ;
Schulten, K .
BIOPHYSICAL JOURNAL, 2005, 88 (06) :3745-3761
[2]  
Allen M. P., 1987, COMPUTER SIMULATION
[3]   Molecular dynamics - potential of mean force calculations as a tool for understanding ion permeation and selectivity in narrow channels [J].
Allen, Toby W. ;
Andersen, Olaf S. ;
Roux, Benoit .
BIOPHYSICAL CHEMISTRY, 2006, 124 (03) :251-267
[4]   Ion permeation through a narrow channel: Using gramicidin to ascertain all-atom molecular dynamics potential of mean force methodology and biomolecular force fields [J].
Allen, TW ;
Andersen, OS ;
Roux, B .
BIOPHYSICAL JOURNAL, 2006, 90 (10) :3447-3468
[5]   On the importance of atomic fluctuations, protein flexibility, and solvent in ion permeation [J].
Allen, TW ;
Andersen, OS ;
Roux, B .
JOURNAL OF GENERAL PHYSIOLOGY, 2004, 124 (06) :679-690
[6]   Gramicidin channels [J].
Andersen, OS ;
Koeppe, RE ;
Roux, B .
IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2005, 4 (01) :10-20
[7]   Toward an Understanding of the Specific Ion Effect Using Density Functional Theory [J].
Baer, Marcel D. ;
Mundy, Christopher J. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (09) :1088-1093
[8]   Energetics of ion conduction through the K+ channel [J].
Bernèche, S ;
Roux, B .
NATURE, 2001, 414 (6859) :73-77
[9]   Molecular dynamics simulations of ion transport through carbon nanotubes. I. Influence of geometry, ion specificity, and many-body interactions [J].
Beu, Titus A. .
JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (16)
[10]   Atoms-to-microns model for small solute transport through sticky nanochannels [J].
Carr, Rogan ;
Comer, Jeffrey ;
Ginsberg, Mark D. ;
Aksimentiev, Aleksei .
LAB ON A CHIP, 2011, 11 (22) :3766-3773