Multi-Method Analysis of MRI Images in Early Diagnostics of Alzheimer's Disease

被引:228
作者
Wolz, Robin [1 ]
Julkunen, Valtteri [2 ]
Koikkalainen, Juha [3 ]
Niskanen, Eini [2 ,4 ]
Zhang, Dong Ping [1 ]
Rueckert, Daniel [1 ]
Soininen, Hilkka [2 ,5 ]
Lotjonen, Jyrki [3 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Comp, Biomed Image Anal Grp, London, England
[2] Kuopio Univ Hosp, Dept Neurol, SF-70210 Kuopio, Finland
[3] VTT Tech Res Ctr Finland, Knowledge Intens Serv, Tampere, Finland
[4] Univ Eastern Finland, Dept Appl Phys, Kuopio, Finland
[5] Univ Eastern Finland, Inst Clin Med, Kuopio, Finland
来源
PLOS ONE | 2011年 / 6卷 / 10期
关键词
MILD COGNITIVE IMPAIRMENT; NEUROIMAGING INITIATIVE ADNI; BRAIN; BIOMARKERS; HIPPOCAMPAL; VOLUME; CLASSIFICATION; SEGMENTATION; ACCUMULATION; PARAMETER;
D O I
10.1371/journal.pone.0025446
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The role of structural brain magnetic resonance imaging (MRI) is becoming more and more emphasized in the early diagnostics of Alzheimer's disease (AD). This study aimed to assess the improvement in classification accuracy that can be achieved by combining features from different structural MRI analysis techniques. Automatically estimated MR features used are hippocampal volume, tensor-based morphometry, cortical thickness and a novel technique based on manifold learning. Baseline MRIs acquired from all 834 subjects (231 healthy controls (HC), 238 stable mild cognitive impairment (S-MCI), 167 MCI to AD progressors (P-MCI), 198 AD) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database were used for evaluation. We compared the classification accuracy achieved with linear discriminant analysis (LDA) and support vector machines (SVM). The best results achieved with individual features are 90% sensitivity and 84% specificity (HC/AD classification), 64%/66% (S-MCI/P-MCI) and 82%/76% (HC/P-MCI) with the LDA classifier. The combination of all features improved these results to 93% sensitivity and 85% specificity (HC/AD), 67%/69% (S-MCI/P-MCI) and 86%/82% (HC/P-MCI). Compared with previously published results in the ADNI database using individual MR-based features, the presented results show that a comprehensive analysis of MRI images combining multiple features improves classification accuracy and predictive power in detecting early AD. The most stable and reliable classification was achieved when combining all available features.
引用
收藏
页数:9
相关论文
共 55 条
[1]  
[Anonymous], 1998, APPL REGRESSION ANAL
[2]  
[Anonymous], 1988, Principles of Multivariate Analysis
[3]   Laplacian eigenmaps for dimensionality reduction and data representation [J].
Belkin, M ;
Niyogi, P .
NEURAL COMPUTATION, 2003, 15 (06) :1373-1396
[4]   NEUROPATHOLOGICAL STAGING OF ALZHEIMER-RELATED CHANGES [J].
BRAAK, H ;
BRAAK, E .
ACTA NEUROPATHOLOGICA, 1991, 82 (04) :239-259
[5]   Forecasting the global burden of Alzheimer's disease [J].
Brookmeyer, Ron ;
Johnson, Elizabeth ;
Ziegler-Graham, Kathryn ;
Arrighi, H. Michael .
ALZHEIMERS & DEMENTIA, 2007, 3 (03) :186-191
[6]   Mapping the regional influence of genetics on brain structure variability - A Tensor-Based Morphometry study [J].
Brun, Caroline C. ;
Lepore, Natasha ;
Pennec, Xavier ;
Lee, Agatha D. ;
Barysheva, Marina ;
Madsen, Sarah K. ;
Avedissian, Christina ;
Chou, Yi-Yu ;
de Zubicaray, Greig I. ;
McMahon, Katie L. ;
Wright, Margaret J. ;
Toga, Arthur W. ;
Thompson, Paul M. .
NEUROIMAGE, 2009, 48 (01) :37-49
[7]  
Chung MK, 2004, 2004 2ND IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: MACRO TO NANO, VOLS 1 AND 2, P432
[8]   Automatic segmentation of the hippocampus and the amygdala driven by hybrid constraints: Method and validation [J].
Chupin, M. ;
Hammers, A. ;
Liu, R. S. N. ;
Colliot, O. ;
Burdett, J. ;
Bardinet, E. ;
Duncan, J. S. ;
Garnero, L. ;
Lemieux, L. .
NEUROIMAGE, 2009, 46 (03) :749-761
[9]   SUPPORT-VECTOR NETWORKS [J].
CORTES, C ;
VAPNIK, V .
MACHINE LEARNING, 1995, 20 (03) :273-297
[10]  
Cuingnet R., 2010, NEUROIMAGE IN PRESS