Robust state feedback control of LTV systems: Nonlinear is better than linear

被引:24
作者
Blanchini, F [1 ]
Megretski, A
机构
[1] Univ Udine, Dipartimento Matemat & Informat, I-33100 Udine, Italy
[2] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
关键词
Lyapunov functions; nonlinear control; parametric uncertainties; robust stabilization; state feedback;
D O I
10.1109/9.754822
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Examples of linear control systems with fast time-varying uncertain coefficients are given, which can be stabilized by a nonlinear memoryless state feedback, but cannot be stabilized by a linear time-invariant dynamic state feedback. By means of one of these examples the authors show that the closed-loop quadratic stability margin may be infinitely smaller than the actual stability margin.
引用
收藏
页码:802 / 807
页数:6
相关论文
共 15 条
[1]   LINEAR ULTIMATE BOUNDEDNESS CONTROL OF UNCERTAIN DYNAMICAL-SYSTEMS [J].
BARMISH, BR ;
PETERSEN, IR ;
FEUER, A .
AUTOMATICA, 1983, 19 (05) :523-532
[2]   STABILIZATION OF UNCERTAIN SYSTEMS VIA LINEAR-CONTROL [J].
BARMISH, BR .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1983, 28 (08) :848-850
[3]  
BARMISH BR, 1985, J OPT TH APPL, V46
[4]   NONQUADRATIC LYAPUNOV FUNCTIONS FOR ROBUST-CONTROL [J].
BLANCHINI, F .
AUTOMATICA, 1995, 31 (03) :451-461
[5]  
Blanchini F, 1996, IEEE DECIS CONTR P, P1027, DOI 10.1109/CDC.1996.574629
[6]  
BLANCHINI F, 1996, P 35 C DEC CONTR KOB
[7]  
CORLESS M, 1993, P IFAC WORLD C SIDN
[8]   ROBUST STABILIZATION OF UNCERTAIN LINEAR-SYSTEMS - QUADRATIC STABILIZABILITY AND H INFINITY-CONTROL THEORY [J].
KHARGONEKAR, PP ;
PETERSEN, IR ;
ZHOU, KM .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1990, 35 (03) :356-361
[9]   A smooth converse Lyapunov theorem for robust stability [J].
Lin, YD ;
Sontag, ED ;
Wang, Y .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1996, 34 (01) :124-160
[10]  
LUENBERGER D. G., 1969, Optimization by Vector Space Methods