STOCHASTIC REGULARIZATION METHOD FOR BACKWARD CAUCHY PROBLEM IN BANACH SPACES

被引:1
作者
Burrage, K. [1 ,2 ]
van Casteren, J. [3 ]
Piskarev, S. [4 ]
机构
[1] Univ Oxford, COMLAB, Oxford, England
[2] Univ Queensland, IMB, Brisbane, Qld, Australia
[3] Univ Antwerp, Dept Math & Comp Sci, B-2020 Antwerp, Belgium
[4] Moscow MV Lomonosov State Univ, Sci Res Comp Ctr, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
differential equations; Backward Cauchy problem; Banach spaces; Difference schemes; Discrete semigroups; Full discretization; Ill-posed problem; Regularization; Semidiscretization; Well-posedness; ILL-POSED PROBLEMS;
D O I
10.1080/01630563.2011.604196
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a stochastic regularization method for solving the backward Cauchy problem in Banach spaces. An order of convergence is obtained on sourcewise representative elements.
引用
收藏
页码:1019 / 1040
页数:22
相关论文
共 32 条
[1]   Structural stability for ill-posed problems in Banach space [J].
Ames, KA ;
Hughes, RJ .
SEMIGROUP FORUM, 2005, 70 (01) :127-145
[2]  
[Anonymous], 1977, Solution of illposed problems
[3]  
[Anonymous], 2000, NZ J MATHS
[4]  
[Anonymous], 1986, WILEY SERIES PROBABI
[5]  
Bakushinsky A.B., 2006, NUMER METHOD PROG N, VN7, P163
[6]  
Boussetila N, 2006, ELECTRON J DIFFER EQ
[7]   High strong order explicit Runge-Kutta methods for stochastic ordinary differential equations [J].
Burrage, K ;
Burrage, PM .
APPLIED NUMERICAL MATHEMATICS, 1996, 22 (1-3) :81-101
[8]   Stochastic methods for ill-posed problems [J].
Burrage, K ;
Piskarev, S .
BIT, 2000, 40 (02) :226-240
[9]  
Dalecky Yu.L., 1990, P 5 VILN C PROB THEO, V1, P433
[10]  
Dalecky Yu.L., 1991, MEASURES DIFFERENT S, P323