Tumor classification based on gene microarray data and hybrid learning method

被引:10
|
作者
Liu, J [1 ]
Zhou, HB [1 ]
机构
[1] Wuhan Univ, Dept Comp Sci, Wuhan 430072, HUbei, Peoples R China
来源
2003 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-5, PROCEEDINGS | 2003年
关键词
tumor classification; pareto optimization; MOEA;
D O I
10.1109/ICMLC.2003.1259886
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Gene expression microarray data can be used to classify tumor types. We proposed a new procedure to classify human tumor samples based on microarray gene expressions by using a hybrid supervised learning method called MOEA/WV (Multi-Objective Evolutionary Algorithm/ Weighted Voting). MOEA is used to search for a relatively few subsets of informative genes from the high-dimensional gene space, and WV is used as a classification tool. This new method has been applied to predicate the subtypes of lymphoma and outcomes of medulloblastoma. The results are relatively accurate and meaningful compared with those from other methods.
引用
收藏
页码:2275 / 2280
页数:6
相关论文
共 50 条
  • [21] A novel aggregate gene selection method for microarray data classification
    Thanh Nguyen
    Khosravi, Abbas
    Creighton, Douglas
    Nahavandi, Saeid
    PATTERN RECOGNITION LETTERS, 2015, 60-61 : 16 - 23
  • [22] A hybrid GA/SVM approach for gene selection and classification of microarray data
    Huerta, Edmundo Bonilla
    Duval, Beatrice
    Hao, Jin-Kao
    APPLICATIONS OF EVOLUTIONARY COMPUTING, PROCEEDINGS, 2006, 3907 : 34 - 44
  • [23] Hybrid methods to select informative gene sets in microarray data classification
    Yang, Pengyi
    Zhang, Zili
    AI 2007: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2007, 4830 : 810 - 814
  • [24] A hybrid LDA and genetic algorithm for gene selection and classification of microarray data
    Bonilla Huerta, Edmundo
    Duval, Beatrice
    Hao, Jin-Kao
    NEUROCOMPUTING, 2010, 73 (13-15) : 2375 - 2383
  • [25] An Entropy-based gene selection method for cancer classification using microarray data
    Liu, XX
    Krishnan, A
    Mondry, A
    BMC BIOINFORMATICS, 2005, 6
  • [26] An Entropy-based gene selection method for cancer classification using microarray data
    Xiaoxing Liu
    Arun Krishnan
    Adrian Mondry
    BMC Bioinformatics, 6 (1)
  • [27] An Entropy-based gene selection method for cancer classification using microarray data
    Liu, XX
    Krishnan, A
    Mondry, A
    BMC BIOINFORMATICS, 2005, 6
  • [28] An SVM based classification method for cancer data using minimum microarray gene expressions
    Mallika, R.
    Saravanan, V.
    World Academy of Science, Engineering and Technology, 2010, 38 : 543 - 547
  • [29] Mapping microarray gene expression data into dissimilarity spaces for tumor classification
    Garcia, Vicente
    Sanchez, J. Salvador
    INFORMATION SCIENCES, 2015, 294 : 362 - 375
  • [30] Gene selection for tumor classification using microarray gone expression data
    Yendrapalli, K.
    Basnet, R.
    Mukkamala, S.
    Sung, A. H.
    WORLD CONGRESS ON ENGINEERING 2007, VOLS 1 AND 2, 2007, : 290 - +