When Does Memory Speed-up Mixing?

被引:0
作者
Apers, Simon [1 ]
Sarlette, Alain [2 ,3 ]
Ticozzi, Francesco [4 ,5 ]
机构
[1] Univ Ghent, Dept Elect & Informat Syst, Technol Pk 914, B-9052 Zwijnaared Ghent, Belgium
[2] Univ Ghent, Ghent, Belgium
[3] INRIA Paris, QUANTIC Lab, Rue Simone Iff 2, F-75012 Paris, France
[4] Univ Padua, Dipartimento Ingn Informaz, Via Gradenigo 6-B, I-35131 Padua, Italy
[5] Dartmouth Coll, Dept Phys & Astron, 3127 Wilder, Hanover, NH 03755 USA
来源
2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC) | 2017年
关键词
MARKOV-CHAINS; RANDOM-WALKS; ALGORITHM; TIME;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We investigate under which conditions a higherorder Markov chain, or more generally a Markov chain on an extended state space, can mix faster than a standard Markov chain on a graph of interest. We find that, depending on the constraints on the dynamics, two very different scenarios can emerge: under strict invariance of the target marginal and for general initialization of the lifted chain no speedup is possible; on the other hand, if these requirements are both relaxed, the lifted dynamics can achieve mixing in a time that corresponds to the diameter of the graph, which is optimal.
引用
收藏
页数:6
相关论文
共 22 条
[1]   Non-backtracking random walks mix faster [J].
Alon, Noga ;
Benjamini, Itai ;
Lubetzky, Eyal ;
Sodin, Sasha .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2007, 9 (04) :585-603
[2]  
[Anonymous], 1995, Reversible markov chains and random walks on graphs
[3]  
[Anonymous], 2009, American Mathematical Soc.
[4]  
Bernard P., 1999, Lectures on probability theory and statistics, V1717, P93
[5]  
Diaconis P, 2000, ANN APPL PROBAB, V10, P726
[6]   The cutoff phenomenon in finite Markov chains [J].
Diaconis, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (04) :1659-1664
[7]  
Diaconis P., 2013, Annales de la Facult des sciences de Toulouse: Mathmatiques Ser. 6, V22, P573, DOI [10.5802/afst.1383, DOI 10.5802/AFST.1383]
[8]   A RANDOM POLYNOMIAL-TIME ALGORITHM FOR APPROXIMATING THE VOLUME OF CONVEX-BODIES [J].
DYER, M ;
FRIEZE, A ;
KANNAN, R .
JOURNAL OF THE ACM, 1991, 38 (01) :1-17
[9]  
Feng Chen, 1999, Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing, P275, DOI 10.1145/301250.301315
[10]   Non-reversible Monte Carlo simulations of spin models [J].
Fernandes, Heitor C. M. ;
Weigel, Martin .
COMPUTER PHYSICS COMMUNICATIONS, 2011, 182 (09) :1856-1859