Disjunctive Total Domination Subdivision Number of Graphs

被引:6
作者
Ciftci, Canan [1 ]
Aytac, Vecdi [2 ]
机构
[1] Ordu Univ, Fac Arts & Sci, Dept Math, TR-52200 Ordu, Turkey
[2] Ege Univ, Dept Comp Engn, Fac Engn, TR-35100 Izmir, Turkey
关键词
domination; disjunctive total domination; subdivision;
D O I
10.3233/FI-2020-1928
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A set S subset of V (G) is a disjunctive total dominating set of G if every vertex has a neighbor in S or has at least two vertices in S at distance 2 from it. The disjunctive total domination number is the minimum cardinality of a disjunctive total dominating set in G. We define the disjunctive total domination subdivision number of G as the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) to increase the disjunctive total domination number. In this paper, we first study the disjunctive total domination subdivision number of some special graphs. Next, we give some upper bounds on the disjunctive total domination subdivision number for any graphs in terms of vertex degree. Finally, we supply some conditions for a graph G to have a minimum disjunctive total domination subdivision number.
引用
收藏
页码:15 / 26
页数:12
相关论文
共 50 条
[41]   The Oriented Diameter of Graphs with Given Connected Domination Number and Distance Domination Number [J].
Dankelmann, Peter ;
Morgan, Jane ;
Rivett-Carnac, Emily .
GRAPHS AND COMBINATORICS, 2024, 40 (01)
[42]   The Oriented Diameter of Graphs with Given Connected Domination Number and Distance Domination Number [J].
Peter Dankelmann ;
Jane Morgan ;
Emily Rivett-Carnac .
Graphs and Combinatorics, 2024, 40
[43]   Graphs with Large Italian Domination Number [J].
Teresa W. Haynes ;
Michael A. Henning ;
Lutz Volkmann .
Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 :4273-4287
[44]   On the distance domination number of bipartite graphs [J].
Mojdeh, Doost Ali ;
Musawi, Seyed Reza ;
Kiashi, Esmaeil Nazari .
ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2020, 8 (02) :353-364
[45]   On the strong Roman domination number of graphs [J].
Alvarez-Ruiz, M. P. ;
Mediavilla-Gradolph, T. ;
Sheikholeslami, S. M. ;
Valenzuela-Tripodoro, J. C. ;
Yero, I. G. .
DISCRETE APPLIED MATHEMATICS, 2017, 231 :44-59
[46]   A note on the independent domination number in graphs [J].
Rad, Nader Jafari ;
Volkmann, Lutz .
DISCRETE APPLIED MATHEMATICS, 2013, 161 (18) :3087-3089
[47]   Graphs with Large Italian Domination Number [J].
Haynes, Teresa W. ;
Henning, Michael A. ;
Volkmann, Lutz .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (06) :4273-4287
[48]   Domination versus disjunctive domination in trees [J].
Henning, Michael A. ;
Marcon, Sinclair A. .
DISCRETE APPLIED MATHEMATICS, 2015, 184 :171-177
[49]   Triangles and (Total) Domination in Subcubic Graphs [J].
Babikir, Ammar ;
Henning, Michael A. .
GRAPHS AND COMBINATORICS, 2022, 38 (02)
[50]   Bounds on Global Total Domination in Graphs [J].
Rad, Nader Jafari ;
Sharifi, Elahe .
COMPUTER SCIENCE JOURNAL OF MOLDOVA, 2015, 23 (01) :3-10