Disjunctive Total Domination Subdivision Number of Graphs

被引:6
作者
Ciftci, Canan [1 ]
Aytac, Vecdi [2 ]
机构
[1] Ordu Univ, Fac Arts & Sci, Dept Math, TR-52200 Ordu, Turkey
[2] Ege Univ, Dept Comp Engn, Fac Engn, TR-35100 Izmir, Turkey
关键词
domination; disjunctive total domination; subdivision;
D O I
10.3233/FI-2020-1928
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A set S subset of V (G) is a disjunctive total dominating set of G if every vertex has a neighbor in S or has at least two vertices in S at distance 2 from it. The disjunctive total domination number is the minimum cardinality of a disjunctive total dominating set in G. We define the disjunctive total domination subdivision number of G as the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) to increase the disjunctive total domination number. In this paper, we first study the disjunctive total domination subdivision number of some special graphs. Next, we give some upper bounds on the disjunctive total domination subdivision number for any graphs in terms of vertex degree. Finally, we supply some conditions for a graph G to have a minimum disjunctive total domination subdivision number.
引用
收藏
页码:15 / 26
页数:12
相关论文
共 50 条
  • [31] A note on the independent domination number versus the domination number in bipartite graphs
    Shaohui Wang
    Bing Wei
    [J]. Czechoslovak Mathematical Journal, 2017, 67 : 533 - 536
  • [32] A note on the independent domination number versus the domination number in bipartite graphs
    Wang, Shaohui
    Wei, Bing
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2017, 67 (02) : 533 - 536
  • [33] TOTAL ROMAN DOMINATION IN GRAPHS
    Ahangar, Hossein Abdollahzadeh
    Henning, Michael A.
    Samodivkin, Vladimir
    Yero, Ismael G.
    [J]. APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2016, 10 (02) : 501 - 517
  • [34] Inverse total domination in graphs
    Kulli, V. R.
    Iyer, R. R.
    [J]. JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2007, 10 (05) : 613 - 620
  • [35] Complementary total domination in graphs
    Chaluvaraju, B.
    Soner, N. D.
    [J]. JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2007, 10 (04) : 505 - 516
  • [36] Paired domination versus domination and packing number in graphs
    Magda Dettlaff
    Didem Gözüpek
    Joanna Raczek
    [J]. Journal of Combinatorial Optimization, 2022, 44 : 921 - 933
  • [37] Paired domination versus domination and packing number in graphs
    Dettlaff, Magda
    Gozupek, Didem
    Raczek, Joanna
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2022, 44 (02) : 921 - 933
  • [38] NUMBER OF CLIQUES IN GRAPHS WITH A FORBIDDEN SUBDIVISION
    Lee, Choongbum
    Oum, Sang-Il
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2015, 29 (04) : 1999 - 2005
  • [39] Weak Roman subdivision number of graphs
    Pushpam, P. Roushini Leely
    Srilakshmi, N.
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2022, 14 (02)
  • [40] Domination and total domination in cubic graphs of large girth
    Dantas, Simone
    Joos, Felix
    Loewenstein, Christian
    Machado, Deiwison S.
    Rautenbach, Dieter
    [J]. DISCRETE APPLIED MATHEMATICS, 2014, 174 : 128 - 132