Disjunctive Total Domination Subdivision Number of Graphs

被引:6
作者
Ciftci, Canan [1 ]
Aytac, Vecdi [2 ]
机构
[1] Ordu Univ, Fac Arts & Sci, Dept Math, TR-52200 Ordu, Turkey
[2] Ege Univ, Dept Comp Engn, Fac Engn, TR-35100 Izmir, Turkey
关键词
domination; disjunctive total domination; subdivision;
D O I
10.3233/FI-2020-1928
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A set S subset of V (G) is a disjunctive total dominating set of G if every vertex has a neighbor in S or has at least two vertices in S at distance 2 from it. The disjunctive total domination number is the minimum cardinality of a disjunctive total dominating set in G. We define the disjunctive total domination subdivision number of G as the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) to increase the disjunctive total domination number. In this paper, we first study the disjunctive total domination subdivision number of some special graphs. Next, we give some upper bounds on the disjunctive total domination subdivision number for any graphs in terms of vertex degree. Finally, we supply some conditions for a graph G to have a minimum disjunctive total domination subdivision number.
引用
收藏
页码:15 / 26
页数:12
相关论文
共 50 条
  • [21] Coronas and Domination Subdivision Number of a Graph
    M. Dettlaff
    M. Lemańska
    J. Topp
    P. Żyliński
    Bulletin of the Malaysian Mathematical Sciences Society, 2018, 41 : 1717 - 1724
  • [22] Secure domination subdivision number of a graph
    Rashmi, S. V. Divya
    Somasundaram, A.
    Arumugam, S.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2019, 11 (03)
  • [23] Further Progress on the Total Roman {2}-Domination Number of Graphs
    Abdollahzadeh Ahangar, Hossein
    Chellali, Mustapha
    Hajjari, Maryam
    Sheikholeslami, Seyed Mahmoud
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (03) : 1111 - 1119
  • [24] Algorithmic aspects of b-disjunctive domination in graphs
    B. S. Panda
    Arti Pandey
    S. Paul
    Journal of Combinatorial Optimization, 2018, 36 : 572 - 590
  • [25] On α-total domination in graphs
    Henning, Michael A.
    Rad, Nader Jafari
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (7-8) : 1143 - 1151
  • [26] Disjunctive domination in graphs with minimum degree at least two
    Zhuang, Wei
    DISCRETE MATHEMATICS, 2023, 346 (07)
  • [27] Algorithmic aspects of b-disjunctive domination in graphs
    Panda, B. S.
    Pandey, Arti
    Paul, S.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2018, 36 (02) : 572 - 590
  • [28] A constructive characterization of trees with equal total domination and disjunctive domination numbers
    Henning, Michael A.
    Marcon, Sinclair A.
    QUAESTIONES MATHEMATICAE, 2016, 39 (04) : 531 - 543
  • [29] Tadpole domination number of graphs
    Prebhath, Vinny Susan
    Sangeetha, V.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2023, 15 (08)
  • [30] Domination and Total Domination Contraction Numbers of Graphs
    Huang, Jia
    Xu, Jun-Ming
    ARS COMBINATORIA, 2010, 94 : 431 - 443