Relativistic Statistical Mechanics vs. Relativistic Thermodynamics

被引:13
作者
Ares de Parga, Gonzalo [1 ]
Lopez-Carrera, Benjamin [2 ]
机构
[1] Natl Polytech Inst, Sch Math & Phys, Dept Phys, Mexico City 07738, DF, Mexico
[2] Natl Polytech Inst, Sch Comp, Mexico City 07738, DF, Mexico
关键词
relativistic statistical mechanics; covariant theory; juttner distribution function; canonical transformation; BODY APPEAR COOL; TEMPERATURE TRANSFORMATION; FINITE-VOLUME; SYSTEMS; INVARIANCE;
D O I
10.3390/e13091664
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Based on a covariant theory of equilibrium Thermodynamics, a Statistical Relativistic Mechanics is developed for the non-interacting case. Relativistic Thermodynamics and Juttner Relativistic Distribution Function in a moving frame are obtained by using this covariant theory. A proposal for a Relativistic Statistical Mechanics is exposed for the interacting case.
引用
收藏
页码:1664 / 1693
页数:30
相关论文
共 47 条
[1]   Redefined relativistic thermodynamics based on the Nakamura formalism [J].
Ares de Parga, G. ;
Lopez-Carrera, B. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2009, 388 (20) :4345-4356
[2]   RELATIVISTIC PARTICLE DYNAMICS .2. [J].
BAKAMJIAN, B ;
THOMAS, LH .
PHYSICAL REVIEW, 1953, 92 (05) :1300-1310
[3]   RELATIVISTIC STATISTICAL THERMODYNAMICS [J].
BALESCU, R .
PHYSICA, 1968, 40 (03) :309-&
[4]   ON COVARIANT FORMULATION OF CLASSICAL RELATIVISTIC STATISTICAL MECHANICS [J].
BALESCU, R ;
KOTERA, T .
PHYSICA, 1967, 33 (03) :558-&
[5]   Thermal equilibrium and statistical thermometers in special relativity [J].
Cubero, David ;
Casado-Pascual, Jesus ;
Dunkel, Jorn ;
Talkner, Peter ;
Hanggi, Peter .
PHYSICAL REVIEW LETTERS, 2007, 99 (17)
[6]   RELATIVISTIC INVARIANCE AND HAMILTONIAN THEORIES OF INTERACTING PARTICLES [J].
CURRIE, DG ;
SUDARSHAN, ECG ;
JORDAN, TF .
REVIEWS OF MODERN PHYSICS, 1963, 35 (02) :350-&
[7]   A proposal for relativistic transformations in thermodynamics [J].
de Parga, GA ;
López-Carrera, B ;
Angulo-Brown, F .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (13) :2821-2834
[8]   Equilibrium distribution function of a relativistic dilute perfect gas [J].
Debbasch, F. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (11) :2443-2454
[9]   Relative entropy, Haar measures and relativistic canonical velocity distributions [J].
Dunkel, Joern ;
Talkner, Peter ;
Haenggi, Peter .
NEW JOURNAL OF PHYSICS, 2007, 9
[10]   One-dimensional non-relativistic and relativistic Brownian motions:: a microscopic collision model [J].
Dunkel, Joern ;
Haenggi, Peter .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 374 (02) :559-572