NONCONFORMING FINITE ELEMENT SPACES FOR 2mTH ORDER PARTIAL DIFFERENTIAL EQUATIONS ON Rn SIMPLICIAL GRIDS WHEN m = n+1

被引:17
作者
Wu, Shuonan [1 ]
Xu, Jinchao [1 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
关键词
Finite element method; nonconforming; 2mth order elliptic problem; triharmonic problem; CONVERGENCE; ENERGY; FAMILY; SCHEME;
D O I
10.1090/mcom/3361
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a family of nonconforming finite elements for 2mth order partial differential equations in R-n on simplicial grids when m = n + 1. This family of nonconforming elements naturally extends the elements proposed by Wang and Xu [Math. Comp. 82 (2013), pp. 25-43], where m <= n is required. We prove the unisolvent property by induction on the dimensions using the similarity properties of both shape function spaces and degrees of freedom. The proposed elements have approximability, pass the generalized patch test, and hence converge. We also establish quasi-optimal error estimates in the broken H-3 norm for the 2D nonconforming element. In addition, we propose an H-3 nonconforming finite element that is robust for the sixth order singularly perturbed problems in 2D. These theoretical results are further validated by the numerical tests for the 2D triharmonic problem.
引用
收藏
页码:531 / 551
页数:21
相关论文
共 42 条
[1]  
ALFELD P, 1991, MATH COMPUT, V57, P299, DOI 10.1090/S0025-5718-1991-1079007-2
[2]  
[Anonymous], 2003, SOBOLEV SPACES
[3]   Unified analysis of discontinuous Galerkin methods for elliptic problems [J].
Arnold, DN ;
Brezzi, F ;
Cockburn, B ;
Marini, LD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) :1749-1779
[4]   Nucleation and growth by a phase field crystal (PFC) model [J].
Backofen, R. ;
Raetz, A. ;
Voigt, A. .
PHILOSOPHICAL MAGAZINE LETTERS, 2007, 87 (11) :813-820
[5]   Finite element approximation of a sixth order nonlinear degenerate parabolic equation [J].
Barrett, JW ;
Langdon, S ;
Nürnberg, R .
NUMERISCHE MATHEMATIK, 2004, 96 (03) :401-434
[6]  
Bazeley GP, 1965, Proc Conf Matrix Methods Struct Mech, V7, P547
[7]   TRIANGULAR ELEMENTS IN FINITE ELEMENT METHOD [J].
BRAMBLE, JH ;
ZLAMAL, M .
MATHEMATICS OF COMPUTATION, 1970, 24 (112) :809-+
[8]  
Brenner S. C., 2008, TEXTS APPL MATH, V15
[9]   A two-level additive Schwarz preconditioner for nonconforming plate elements [J].
Brenner, SC .
NUMERISCHE MATHEMATIK, 1996, 72 (04) :419-447
[10]   Poincare-Friedrichs inequalities for piecewise H1 functions [J].
Brenner, SC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (01) :306-324