A combination theorem for relatively hyperbolic groups

被引:40
作者
Alibegovic, E [1 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
关键词
D O I
10.1112/S0024609304004059
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a graph of delta-hyperbolic spaces, this paper gives sufficient conditions that ensure that the graph itself is delta-hyperbolic. As an application, a simple proof is given to show that limit groups are relatively hyperbolic.
引用
收藏
页码:459 / 466
页数:8
相关论文
共 10 条
[1]  
BESTVINA M, 1992, J DIFFER GEOM, V35, P85
[2]  
BOWDITCH BH, 1985, MICH MATH J, V42, P103
[3]  
Bucher M., 2014, NEW YORK J MATH, V6, P1
[4]  
Bumagin I., 2004, ALGEBR GEOM TOPOL, V4, P1013
[5]   Combination of convergence groups [J].
Dahmani, F .
GEOMETRY & TOPOLOGY, 2003, 7 :933-963
[6]  
Gromov M., 1987, Math. Sci. Res. Inst. Publ., V8, P75, DOI [DOI 10.1007/978-1-4613-9586-7_3, 10.1007/978-1-4613-9586-7_3]
[7]   Irreducible affine varieties over a free group II. Systems in triangular quasi-quadratic form and description of residually free groups [J].
Kharlampovich, O ;
Myasnikov, A .
JOURNAL OF ALGEBRA, 1998, 200 (02) :517-570
[8]   Irreducible affine varieties over a free group - I. Irreducibility of quadratic equations and Nullstellensatz [J].
Kharlampovich, O ;
Myasnikov, A .
JOURNAL OF ALGEBRA, 1998, 200 (02) :472-516
[9]  
REBECHI DY, 2001, THESIS U CALIFORNIA
[10]  
Sela Z, 2001, PUBL MATH, P31