In the modelling of many important problems in science and engineering we face stiff stochastic differential equations (SDEs). In this paper, a new class of split-step double balanced (SSDB) approximation methods is constructed for numerically solving systems of stiff Ito SDEs with multi-dimensional noise. In these methods, an appropriate control function has been used twice to improve the stability properties. Under global Lipschitz conditions, convergence with order one in the mean-square sense is established. Also, the mean-square stability (MS-stability) properties of the SSDB methods have been analysed for a one-dimensional linear SDE with multiplicative noise. Therefore, the MS-stability functions of SSDB methods are determined and in some special cases, their regions of MS-stability have been compared to the stability region of the original equation. Finally, simulation results confirm that the proposed methods are efficient with respect to accuracy and computational cost.