Crossover between ballistic and diffusive transport: the quantum exclusion process

被引:99
作者
Eisler, Viktor [1 ,2 ]
机构
[1] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen O, Denmark
[2] Univ Vienna, Fac Phys, A-1090 Vienna, Austria
关键词
quantum integrability (Bethe ansatz); stochastic particle dynamics (theory); quantum transport in one dimension; diffusion;
D O I
10.1088/1742-5468/2011/06/P06007
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We study the evolution of a system of free fermions in one dimension under the simultaneous effects of coherent tunneling and stochastic Markovian noise. We identify a class of noise terms where a hierarchy of decoupled equations for the correlation functions emerges. In the special case of incoherent, nearest-neighbor hopping the equation for the two-point functions is solved explicitly. The Green's function for the particle density is obtained analytically and a time scale is identified where a crossover from ballistic to diffusive behavior takes place. The result can be interpreted as a competition between the two types of conduction channels where diffusion dominates on large timescales.
引用
收藏
页数:20
相关论文
共 28 条
[1]  
[Anonymous], 1999, STOCHASTIC INTERACTI
[2]   Transport in the XX chain at zero temperature:: Emergence of flat magnetization profiles [J].
Antal, T ;
Rácz, Z ;
Rákos, A ;
Schütz, GM .
PHYSICAL REVIEW E, 1999, 59 (05) :4912-4918
[3]   Logarithmic current fluctuations in nonequilibrium quantum spin chains [J].
Antal, T. ;
Krapivsky, P. L. ;
Rakos, A. .
PHYSICAL REVIEW E, 2008, 78 (06)
[4]  
Breuer H.-P., 2007, The Theory of Open Quantum Systems
[5]   INTEGRABILITY AND IDEAL CONDUCTANCE AT FINITE TEMPERATURES [J].
CASTELLA, H ;
ZOTOS, X ;
PRELOVSEK, P .
PHYSICAL REVIEW LETTERS, 1995, 74 (06) :972-975
[6]  
CLARK SR, 2009, NEW J PHYS, V12
[7]   Current Fluctuations of the One Dimensional Symmetric Simple Exclusion Process with Step Initial Condition [J].
Derrida, Bernard ;
Gerschenfeld, Antoine .
JOURNAL OF STATISTICAL PHYSICS, 2009, 136 (01) :1-15
[8]   Emergence of diffusion in finite quantum systems [J].
Esposito, M ;
Gaspard, P .
PHYSICAL REVIEW B, 2005, 71 (21)
[9]   Exactly solvable model of quantum diffusion [J].
Esposito, M ;
Gaspard, P .
JOURNAL OF STATISTICAL PHYSICS, 2005, 121 (3-4) :463-496
[10]  
Giamarchi T, 2003, QUANTUM PHYS ONE DIM