Modulus of Strong Proximinality and Continuity of Metric Projection

被引:4
作者
Dutta, S. [1 ]
Shunmugaraj, P. [1 ]
机构
[1] Indian Inst Technol, Dept Math & Stat, Kanpur 208016, Uttar Pradesh, India
关键词
Strong proximinality; Metric projections; Modulus of strong proximinality; Hausdorff metric continuous; BANACH-SPACES; SUBSPACES;
D O I
10.1007/s11228-010-0143-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we initiate a quantitative study of strong proximinality. We define a quantity I mu(x, t) which we call as modulus of strong proximinality and show that the metric projection onto a strongly proximinal subspace Y of a Banach space X is continuous at x if and only if epsilon(x, t) is continuous at x whenever t > 0. The best possible estimate of epsilon(x, t) characterizes spaces with 1 1/2 ball property. Estimates of epsilon(x, t) are obtained for subspaces of uniformly convex spaces and of strongly proximinal subspaces of finite codimension in C(K).
引用
收藏
页码:271 / 281
页数:11
相关论文
共 12 条
[1]  
Dutta S, 2007, CONTEMP MATH, V435, P143
[2]  
Dutta S., 2007, Colloq. Math., V109, P119
[3]  
FONF V, METRIC PROJECT UNPUB
[4]   POLYHEDRAL BANACH SPACES [J].
GLEIT, A ;
MCGUIGAN, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 33 (02) :398-&
[5]  
Godefroy G., 2001, Rev. Mat. Complut., V14, P105, DOI DOI 10.5209/REV_REMA.2001.V14.N1.17047
[6]  
GODINI G, 1981, LECT NOTES MATH
[7]  
HARMAND H, 1993, LECT NOTES MATH, V1547
[8]   Metric projections and polyhedral spaces [J].
Indumathi, V. .
SET-VALUED ANALYSIS, 2007, 15 (03) :239-250
[9]  
INDUMATHI V, 2004, C MATH, V99, P231
[10]   SUFFICIENT CONDITION FOR PROXIMITY [J].
LAU, KS .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 251 (JUL) :343-356