Achieving fast high-fidelity optimal control of many-body quantum dynamics

被引:8
作者
Jensen, Jesper Hasseriis Mohr [1 ]
Moller, Frederik Skovbo [1 ,2 ]
Sorensen, Jens Jakob [1 ]
Sherson, Jacob Friis [1 ]
机构
[1] Aarhus Univ, Dept Phys & Astron, Ny Munkegade 120, DK-8000 Aarhus C, Denmark
[2] TU Wien, Atominst, Vienna Ctr Quantum Sci & Technol, Stadionallee 2, A-1020 Vienna, Austria
基金
欧盟地平线“2020”;
关键词
ENTANGLEMENT; SEARCH;
D O I
10.1103/PhysRevA.104.052210
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We demonstrate the efficiency of a recent exact-gradient optimal control methodology by applying it to a challenging many-body problem, crossing the superfluid to Mott-insulator phase transition in the Bose-Hubbard model. The system size necessitates a matrix product state representation and this seamlessly integrates with the requirements of the algorithm. We observe fidelities in the range 0.99-0.9999 with associated minimal process duration estimates displaying an exponential fidelity-duration trade-off across several orders of magnitude. The corresponding optimal solutions are characterized in terms of a predominantly linear sweep across the critical point followed by bang-bang-like structure. This is quite different from the smooth and monotonic solutions identified by earlier gradient-free optimizations which are hampered in locating the higher complexity protocols in the regime of high fidelities at low process durations. Overall, the comparison suggests significant methodological improvements also for many-body systems in the ideal open-loop setting. Acknowledging that idealized open-loop control may deteriorate in actual experiments, we discuss the merits of using such an approach in combination with closed-loop control-in particular, high-fidelity physical insights extracted with the former can be used to formulate practical, low-dimensional search spaces for the latter.
引用
收藏
页数:17
相关论文
共 86 条
[1]   The quantum technologies roadmap: a European community view [J].
Acin, Antonio ;
Bloch, Immanuel ;
Buhrman, Harry ;
Calarco, Tommaso ;
Eichler, Christopher ;
Eisert, Jens ;
Esteve, Daniel ;
Gisin, Nicolas ;
Glaser, Steffen J. ;
Jelezko, Fedor ;
Kuhr, Stefan ;
Lewenstein, Maciej ;
Riedel, Max F. ;
Schmidt, Piet O. ;
Thew, Rob ;
Wallraff, Andreas ;
Walmsley, Ian ;
Wilhelm, Frank K. .
NEW JOURNAL OF PHYSICS, 2018, 20
[2]   Entanglement in many-body systems [J].
Amico, Luigi ;
Fazio, Rosario ;
Osterloh, Andreas ;
Vedral, Vlatko .
REVIEWS OF MODERN PHYSICS, 2008, 80 (02) :517-576
[3]  
Blatt R, 2012, NAT PHYS, V8, P277, DOI [10.1038/nphys2252, 10.1038/NPHYS2252]
[4]   Optimal Protocols in Quantum Annealing and Quantum Approximate Optimization Algorithm Problems [J].
Brady, Lucas T. ;
Baldwin, Christopher L. ;
Bapat, Aniruddha ;
Kharkov, Yaroslav ;
Gorshkov, Alexey, V .
PHYSICAL REVIEW LETTERS, 2021, 126 (07)
[5]   Complexity of controlling quantum many-body dynamics [J].
Caneva, T. ;
Silva, A. ;
Fazio, R. ;
Lloyd, S. ;
Calarco, T. ;
Montangero, S. .
PHYSICAL REVIEW A, 2014, 89 (04)
[6]   Optimal Control at the Quantum Speed Limit [J].
Caneva, T. ;
Murphy, M. ;
Calarco, T. ;
Fazio, R. ;
Montangero, S. ;
Giovannetti, V. ;
Santoro, G. E. .
PHYSICAL REVIEW LETTERS, 2009, 103 (24)
[7]   Chopped random-basis quantum optimization [J].
Caneva, Tommaso ;
Calarco, Tommaso ;
Montangero, Simone .
PHYSICAL REVIEW A, 2011, 84 (02)
[8]   Speeding up critical system dynamics through optimized evolution [J].
Caneva, Tommaso ;
Calarco, Tommaso ;
Fazio, Rosario ;
Santoro, Giuseppe E. ;
Montangero, Simone .
PHYSICAL REVIEW A, 2011, 84 (01)
[9]   Optimal control of fast and high-fidelity quantum gates with electron and nuclear spins of a nitrogen-vacancy center in diamond [J].
Chou, Yi ;
Huang, Shang-Yu ;
Goan, Hsi-Sheng .
PHYSICAL REVIEW A, 2015, 91 (05)
[10]   Optimal control of Rydberg lattice gases [J].
Cui, Jian ;
van Bijnen, Rick ;
Pohl, Thomas ;
Montangero, Simone ;
Calarco, Tommaso .
QUANTUM SCIENCE AND TECHNOLOGY, 2017, 2 (03)