Particle-In-Cell Simulation Analysis of a Multicavity W-Band Sheet Beam Klystron

被引:73
作者
Shin, Young-Min [1 ]
Wang, Jian-Xun [1 ,2 ]
Barnett, Larry R. [1 ]
Luhmann, Neville C., Jr. [1 ]
机构
[1] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA
[2] Univ Sci & Technol China, Hefei 230026, Peoples R China
关键词
Klystron; quasi-optical (QO); sheet beam; W-band; DESIGN; WAVE;
D O I
10.1109/TED.2010.2082544
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A W-band sheet beam klystron is being developed as a portable coherent radiation source for active denial system application. The interaction circuit design employs eight stagger-tuned cavities (multigap structure) and a 12 : 1-aspect-ratio sheet electron beam (74 kV and 3.6 A) to produce 50-kW peak power (2.5 kW average) and 40-dB gain with 200-MHz instantaneous bandwidth. The output cavity is designed to have a quasi-optical (QO) external coupler utilizing optical wave superposition. The circuit design has been optimized by using a 1-D disk-model code and a 3-D particle-in-cell (PIC) solver. The iterative simulation analysis predicts that a five-gap configuration is the optimum structure for a QO-output cavity because it provides sufficient output power and stable single frequency operation without mode competition. The 3-D PIC simulation predicts that the designed circuit produces stable 50-kW output power from a 4-W input driving signal, with 40-dB gain, at 94.5 GHz. The frequency sweep predicts a 3-dB bandwidth of 150 MHz in 2 pi-mode operation. The numerical simulation results agree well with the small-signal analysis, thereby providing confidence in the predicted output performance of the QO klystron amplifier module.
引用
收藏
页码:251 / 258
页数:8
相关论文
共 28 条
[1]  
[Anonymous], 2008, MAGIC MAGNETIC INSUL
[2]  
[Anonymous], 2006, AJDISK VERSION 8 4 3
[3]  
[Anonymous], CST MICROWAVE STUDIO 3D EM Simulation Software
[4]   Millimeter-wave and submillimeter-wave imaging for security and surveillance [J].
Appleby, Roger ;
Anderton, Rupert N. .
PROCEEDINGS OF THE IEEE, 2007, 95 (08) :1683-1690
[5]   STABILITY AND CONFINEMENT OF NONRELATIVISTIC SHEET ELECTRON-BEAMS WITH PERIODIC CUSPED MAGNETIC FOCUSING [J].
BOOSKE, JH ;
MCVEY, BD ;
ANTONSEN, TM .
JOURNAL OF APPLIED PHYSICS, 1993, 73 (09) :4140-4155
[6]   W-band sheet beam klystron PCM focusing design [J].
Burke, A. ;
Besong, V. ;
Granlund, K. ;
Jensen, A. J. ;
Jongewaard, E. ;
Phillips, R. ;
Rauenbuehler, K. ;
Scheitrum, G. ;
Steele, R. .
2006 IEEE INTERNATIONAL VACUUM ELECTRONICS CONFERENCE HELD JOINTLY WITH 2006 IEEE INTERNATIONAL VACUUM ELECTRON SOURCES, 2006, :485-+
[7]  
Carlsten BE, 2006, AIP CONF PROC, V807, P326, DOI 10.1063/1.2158795
[8]   Stability of an emittance-dominated sheet-electron beam in planar wiggler and periodic permanent magnet structures with natural focusing [J].
Carlsten, BE ;
Earley, LM ;
Krawczyk, FL ;
Russell, SJ ;
Potter, JM ;
Ferguson, P ;
Humphries, S .
PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS, 2005, 8 (06)
[9]   Modal analysis and gain calculations for a sheet electron beam in a ridged waveguide slow-wave structure [J].
Carlsten, BE .
PHYSICS OF PLASMAS, 2002, 9 (12) :5088-5096
[10]   Terahertz imaging with nanometer resolution [J].
Chen, HT ;
Kersting, R ;
Cho, GC .
APPLIED PHYSICS LETTERS, 2003, 83 (15) :3009-3011