Divisors in residue classes, constructively

被引:8
作者
Coppersmith, Don
Howgrave-Graham, Nick
Nagaraj, S. V.
机构
[1] Inst Def Anal, Princeton, NJ 08540 USA
[2] NTRU Cryptosyst, Acton, MA 01720 USA
关键词
D O I
10.1090/S0025-5718-07-02007-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let r, s, n be integers satisfying 0 <= r < s < n, s >= n(alpha), alpha > 1/4, and let gcd(r, s) = 1. Lenstra showed that the number of integer divisors of n equivalent to r (mod s) is upper bounded by O((alpha - 1/4)(-2)). We re-examine this problem, showing how to explicitly construct all such divisors, and incidentally improve this bound to O((alpha - 1/4)(-3/2)).
引用
收藏
页码:531 / 545
页数:15
相关论文
共 12 条
[1]  
BERSTEIN DJ, IN PRESS SURVEYS ALG, V44
[2]  
Boneh D, 1998, LECT NOTES COMPUT SC, V1514, P25
[3]   NEW PRIMALITY CRITERIA AND FACTORIZATIONS OF 2M+/-1 [J].
BRILLHART, J ;
LEHMER, DH ;
SELFRIDGE, JL .
MATHEMATICS OF COMPUTATION, 1975, 29 (130) :620-647
[4]  
COHEN H, 1982, DIVISEURS APPARTMENT
[5]  
Coppersmith D, 1996, LECT NOTES COMPUT SC, V1070, P178
[6]  
Crandall R., 2001, PRIME NUMBERS COMPUT
[7]  
Howgrave-Graham N, 1997, LECT NOTES COMPUT SC, V1355, P131, DOI 10.1007/BFb0024458
[8]  
HOWGRAVEGRAHAM N, 1999, THESIS U BATH
[9]  
KONYAGIN S, 1996, MATH P ERDOS
[10]   FACTORING POLYNOMIALS WITH RATIONAL COEFFICIENTS [J].
LENSTRA, AK ;
LENSTRA, HW ;
LOVASZ, L .
MATHEMATISCHE ANNALEN, 1982, 261 (04) :515-534