ReScribe: An Unrestrained Tool Combining Multiplex Recombineering and Minimal-PAM ScCas9 for Genome Recoding Pseudomonas putida

被引:10
作者
Asin-Garcia, Enrique [1 ]
Martin-Pascual, Maria [1 ]
Garcia-Morales, Luis [1 ]
van Kranenburg, Richard [2 ,3 ]
Dos Santos, Vitor A. P. Martins [1 ,4 ,5 ]
机构
[1] Wageningen Univ & Res, Lab Syst & Synthet Biol, NL-6708 WE Wageningen, Netherlands
[2] Corbion, NL-4206 AC Gorinchem, Netherlands
[3] Wageningen Univ & Res, Lab Microbiol, NL-6708 WE Wageningen, Netherlands
[4] LifeGlimmer GmbH, D-12163 Berlin, Germany
[5] Wageningen Univ & Res, Bioproc Engn Grp, NL-6700 AA Wageningen, Netherlands
基金
荷兰研究理事会;
关键词
CRISPR-ScCas9-mediated counterselection; minimal-PAM; multiplexing recoding; recombineering; Pseudomonas putida; CRISPR-BASED TECHNOLOGIES; BACTERIAL GENOME; ESSENTIAL GENES; PROTEIN; ORGANISMS; CELLS; TRANSFORMATION; RECOMBINATION; MANIPULATION; CHROMOSOMES;
D O I
10.1021/acssynbio.1c00297
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Genome recoding enables incorporating new functions into the DNA of microorganisms. By reassigning codons to noncanonical amino acids, the generation of new-to-nature proteins offers countless opportunities for bioproduction and biocontainment in industrial chassis. A key bottleneck in genome recoding efforts, however, is the low efficiency of recombineering, which hinders large-scale applications at acceptable speed and cost. To relieve this bottleneck, we developed ReScribe, a highly optimized recombineering tool enhanced by CRISPR-Cas9-mediated counterselection built upon the minimal PAM 5'-NNG-3' of the Streptococcus canis Cas9 (ScCas9). As a proof of concept, we used ReScribe to generate a minimally recoded strain of the industrial chassis Pseudomonas putida by replacing TAG stop codons (functioning as PAMs) of essential metabolic genes with the synonymous TAA. We showed that ReScribe enables nearly 100% engineering efficiency of multiple loci in P. putida, opening promising avenues for genome editing and applications thereof in this bacterium and beyond.
引用
收藏
页码:2672 / 2688
页数:17
相关论文
共 80 条
[11]   Analysis of RecA-independent recombination events between short direct repeats related to a genomic island and to a plasmid in Escherichia coli K12 [J].
Azpiroz, Maria F. ;
Lavina, Magela .
PEERJ, 2017, 5 :3293
[12]   An expanded CRISPRi toolbox for tunable control of gene expression in Pseudomonas putida [J].
Batianis, Christos ;
Kozaeva, Ekaterina ;
Damalas, Stamatios G. ;
Martin-Pascual, Maria ;
Volke, Daniel C. ;
Nikel, Pablo, I ;
dos Santos, Vitor A. P. Martins .
MICROBIAL BIOTECHNOLOGY, 2020, 13 (02) :368-385
[13]   The revisited genome of Pseudomonas putida KT2440 enlightens its value as a robust metabolic chassis [J].
Belda, Eugeni ;
van Heck, Ruben G. A. ;
Lopez-Sanchez, Maria Jose ;
Cruveiller, Stephane ;
Barbe, Valerie ;
Fraser, Claire ;
Klenk, Hans-Peter ;
Petersen, Joern ;
Morgat, Anne ;
Nikel, Pablo I. ;
Vallenet, David ;
Rouy, Zoe ;
Sekowska, Agnieszka ;
dos Santos, Vitor A. P. Martins ;
de Lorenzo, Victor ;
Danchin, Antoine ;
Medigue, Claudine .
ENVIRONMENTAL MICROBIOLOGY, 2016, 18 (10) :3403-3424
[14]   CRISPR Interference Can Prevent Natural Transformation and Virulence Acquisition during In Vivo Bacterial Infection [J].
Bikard, David ;
Hatoum-Aslan, Asma ;
Mucida, Daniel ;
Marraffini, Luciano A. .
CELL HOST & MICROBE, 2012, 12 (02) :177-186
[15]   Recombineering in Corynebacterium glutamicum combined with optical nanosensors: a general strategy for fast producer strain generation [J].
Binder, Stephan ;
Siedler, Solvej ;
Marienhagen, Jan ;
Bott, Michael ;
Eggeling, Lothar .
NUCLEIC ACIDS RESEARCH, 2013, 41 (12) :6360-6369
[16]   Crystal structure of the Red C-terminal domain in complex with Exonuclease reveals an unexpected homology with Orf and an interaction with Escherichia coli single stranded DNA binding protein [J].
Caldwell, Brian J. ;
Zakharova, Ekaterina ;
Filsinger, Gabriel T. ;
Wormier, Timothy M. ;
Hempfling, Jordan P. ;
Chun-Der, Lee ;
Pei, Dehua ;
Church, George M. ;
Bell, Charles E. .
NUCLEIC ACIDS RESEARCH, 2019, 47 (04) :1950-1963
[17]   A fluoride-responsive genetic circuit enables in vivo biofluorination in engineered Pseudomonas putida [J].
Calero, Patricia ;
Volke, Daniel C. ;
Lowe, Phillip T. ;
Gotfredsen, Charlotte H. ;
O'Hagan, David ;
Nikel, Pablo I. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[18]   Chasing bacterial chassis for metabolic engineering: a perspective review from classical to non-traditional microorganisms [J].
Calero, Patricia ;
Nikel, Pablo I. .
MICROBIAL BIOTECHNOLOGY, 2019, 12 (01) :98-124
[19]  
Chang Y., 2019, EFFICIENCY RECOMBINE, DOI [10.1101/745448, DOI 10.1101/745448]
[20]  
Chatterjee P, 2020, NAT BIOTECHNOL, V38, P1154, DOI 10.1038/s41587-020-0517-0