ReScribe: An Unrestrained Tool Combining Multiplex Recombineering and Minimal-PAM ScCas9 for Genome Recoding Pseudomonas putida

被引:10
作者
Asin-Garcia, Enrique [1 ]
Martin-Pascual, Maria [1 ]
Garcia-Morales, Luis [1 ]
van Kranenburg, Richard [2 ,3 ]
Dos Santos, Vitor A. P. Martins [1 ,4 ,5 ]
机构
[1] Wageningen Univ & Res, Lab Syst & Synthet Biol, NL-6708 WE Wageningen, Netherlands
[2] Corbion, NL-4206 AC Gorinchem, Netherlands
[3] Wageningen Univ & Res, Lab Microbiol, NL-6708 WE Wageningen, Netherlands
[4] LifeGlimmer GmbH, D-12163 Berlin, Germany
[5] Wageningen Univ & Res, Bioproc Engn Grp, NL-6700 AA Wageningen, Netherlands
基金
荷兰研究理事会;
关键词
CRISPR-ScCas9-mediated counterselection; minimal-PAM; multiplexing recoding; recombineering; Pseudomonas putida; CRISPR-BASED TECHNOLOGIES; BACTERIAL GENOME; ESSENTIAL GENES; PROTEIN; ORGANISMS; CELLS; TRANSFORMATION; RECOMBINATION; MANIPULATION; CHROMOSOMES;
D O I
10.1021/acssynbio.1c00297
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Genome recoding enables incorporating new functions into the DNA of microorganisms. By reassigning codons to noncanonical amino acids, the generation of new-to-nature proteins offers countless opportunities for bioproduction and biocontainment in industrial chassis. A key bottleneck in genome recoding efforts, however, is the low efficiency of recombineering, which hinders large-scale applications at acceptable speed and cost. To relieve this bottleneck, we developed ReScribe, a highly optimized recombineering tool enhanced by CRISPR-Cas9-mediated counterselection built upon the minimal PAM 5'-NNG-3' of the Streptococcus canis Cas9 (ScCas9). As a proof of concept, we used ReScribe to generate a minimally recoded strain of the industrial chassis Pseudomonas putida by replacing TAG stop codons (functioning as PAMs) of essential metabolic genes with the synonymous TAA. We showed that ReScribe enables nearly 100% engineering efficiency of multiple loci in P. putida, opening promising avenues for genome editing and applications thereof in this bacterium and beyond.
引用
收藏
页码:2672 / 2688
页数:17
相关论文
共 80 条
[1]   Recombineering for Genetic Engineering of Natural Product Biosynthetic pathways [J].
Abbasi, Muhammad Nazeer ;
Fu, Jun ;
Bian, Xiaoying ;
Wang, Hailong ;
Zhang, Youming ;
Li, Aiying .
TRENDS IN BIOTECHNOLOGY, 2020, 38 (07) :715-728
[2]   Synonymous Virus Genome Recocing as a Tool to Impact Viral Fitness [J].
Angel Martinez, Miguel ;
Jordan-Paiz, Ana ;
Franco, Sandra ;
Nevot, Maria .
TRENDS IN MICROBIOLOGY, 2016, 24 (02) :134-147
[3]   Total Synthesis of a Functional Designer Eukaryotic Chromosome [J].
Annaluru, Narayana ;
Muller, Heloise ;
Mitchell, Leslie A. ;
Ramalingam, Sivaprakash ;
Stracquadanio, Giovanni ;
Richardson, Sarah M. ;
Dymond, Jessica S. ;
Kuang, Zheng ;
Scheifele, Lisa Z. ;
Cooper, Eric M. ;
Cai, Yizhi ;
Zeller, Karen ;
Agmon, Neta ;
Han, Jeffrey S. ;
Hadjithomas, Michalis ;
Tullman, Jennifer ;
Caravelli, Katrina ;
Cirelli, Kimberly ;
Guo, Zheyuan ;
London, Viktoriya ;
Yeluru, Apurva ;
Murugan, Sindurathy ;
Kandavelou, Karthikeyan ;
Agier, Nicolas ;
Fischer, Gilles ;
Yang, Kun ;
Martin, J. Andrew ;
Bilgel, Murat ;
Bohutski, Pavlo ;
Boulier, Kristin M. ;
Capaldo, Brian J. ;
Chang, Joy ;
Charoen, Kristie ;
Choi, Woo Jin ;
Deng, Peter ;
DiCarlo, James E. ;
Doong, Judy ;
Dunn, Jessilyn ;
Feinberg, Jason I. ;
Fernandez, Christopher ;
Floria, Charlotte E. ;
Gladowski, David ;
Hadidi, Pasha ;
Ishizuka, Isabel ;
Jabbari, Javaneh ;
Lau, Calvin Y. L. ;
Lee, Pablo A. ;
Li, Sean ;
Lin, Denise ;
Linder, Matthias E. .
SCIENCE, 2014, 344 (6179) :55-58
[4]   Identification of conditionally essential genes for growth of Pseudomonas putida KT2440 on minimal medium through the screening of a genome-wide mutant library [J].
Antonia Molina-Henares, M. ;
de la Torre, Jesus ;
Garcia-Salamanca, Adela ;
Jesus Molina-Henares, A. ;
Carmen Herrera, M. ;
Ramos, Juan L. ;
Duque, Estrella .
ENVIRONMENTAL MICROBIOLOGY, 2010, 12 (06) :1468-1485
[5]   High-Efficiency Multi-site Genomic Editing of Pseudomonas putida through Thermoinducible ssDNA Recombineering [J].
Aparicio, Tomas ;
Nyerges, Akos ;
Martinez-Garcia, Esteban ;
de Lorenzo, Victor .
ISCIENCE, 2020, 23 (03)
[6]   Mismatch repair hierarchy of Pseudomonas putida revealed by mutagenic ssDNA recombineering of the pyrF gene [J].
Aparicio, Tomas ;
Nyerges, Akos ;
Nagy, Istvan ;
Pal, Csaba ;
Martinez-Garcia, Esteban ;
de Lorenzo, Victor .
ENVIRONMENTAL MICROBIOLOGY, 2020, 22 (01) :45-58
[7]   Improved Thermotolerance of Genome-Reduced Pseudomonas putida EM42 Enables Effective Functioning of the PL/cI857 System [J].
Aparicio, Tomas ;
de Lorenzo, Victor ;
Martinez-Garcia, Esteban .
BIOTECHNOLOGY JOURNAL, 2019, 14 (01)
[8]   CRISPR/Cas9-Based Counterselection Boosts Recombineering Efficiency in Pseudomonas putida [J].
Aparicio, Tomas ;
de Lorenzo, Victor ;
Martinez-Garcia, Esteban .
BIOTECHNOLOGY JOURNAL, 2018, 13 (05)
[9]   The Ssr protein (T1E_1405) from Pseudomonas putida DOT-T1E enables oligonucleotide-based recombineering in platform strain P. putida EM42 [J].
Aparicio, Tomas ;
Jensen, Sheila I. ;
Nielsen, Alex T. ;
de Lorenzo, Victor ;
Martinez-Garcia, Esteban .
BIOTECHNOLOGY JOURNAL, 2016, 11 (10) :1309-1319
[10]   Genetic Safeguards for Safety-by-design: So Close Yet So Far [J].
Asin-Garcia, Enrique ;
Kallergi, Amalia ;
Landeweerd, Laurens ;
dos Santos, Vitor A. P. Martins .
TRENDS IN BIOTECHNOLOGY, 2020, 38 (12) :1308-1312