A rigidity theorem for complete noncompact Bach-flat manifolds

被引:10
作者
Chu, Yawei [1 ,2 ]
机构
[1] Zhengzhou Univ, Dept Math, Zhengzhou 450052, Peoples R China
[2] Fuyang Univ, Sch Math & Computat Sci, Fuyang 236041, Anhui, Peoples R China
关键词
Bach-flat; Rigidity; Trace-free curvature tensor; Space form; DEFORMATION;
D O I
10.1016/j.geomphys.2010.11.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (M-4, g) be a four-dimensional complete noncompact Bach-flat Riemannian manifold with positive Yamabe constant. In this paper, we show that (M-4, g) has a constant curvature if it has a nonnegative constant scalar curvature and sufficiently small L-2-norm of trace-free Riemannian curvature tensor. Moreover, we get a gap theorem for (M-4, g) with positive scalar curvature. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:516 / 521
页数:6
相关论文
共 18 条
[1]  
[Anonymous], 1968, Ann. Scuola Norm. Sup. Pisa (3)
[2]  
Aubin T., 1998, Springer Monographs in Mathematics
[3]  
Besse A. L., 2007, EINSTEIN MANIFOLDS
[4]   On a conformal gap and finiteness theorem for a class of four-manifolds [J].
Chang, Sun-Yung A. ;
Qing, Jie ;
Yang, Paul .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2007, 17 (02) :404-434
[5]  
Chow B., 2006, Hamiltons Ricci Flow. Graduate Studies in Mathematics, V77
[6]  
Delanoe P., 1992, GEOMETRY NONLINEAR P
[7]  
DERDZINSKI A, 1983, COMPOS MATH, V49, P405
[8]   Obstructions to conformally Einstein metrics in n dimensions [J].
Gover, AR ;
Nurowski, P .
JOURNAL OF GEOMETRY AND PHYSICS, 2006, 56 (03) :450-484
[9]   Intrinsic geometry of oriented congruences in three dimensions [J].
Hill, C. Denson ;
Nurowski, Pawel .
JOURNAL OF GEOMETRY AND PHYSICS, 2009, 59 (02) :133-172
[10]  
HUISKEN G, 1985, J DIFFER GEOM, V21, P47