Simulation modelling in landscape genetics: on the need to go further

被引:33
作者
Balkenhol, Niko [2 ]
Landguth, Erin L. [1 ]
机构
[1] Univ Montana, Div Biol Sci, Missoula, MT 59812 USA
[2] Leibniz Inst Zoo & Wildlife Res IZW, D-601103 Berlin, Germany
关键词
computer simulations; dispersal; gene flow; spatial analysis; INFERENCE; DISPERSAL; SCALE;
D O I
10.1111/j.1365-294X.2010.04967.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
With the emergence of landscape genetics, the basic assumptions and predictions of classical population genetic theories are being re-evaluated to account for more complex spatial and temporal dynamics. Within the last decade, there has been an exponential increase in such landscape genetic studies (Holderegger & Wagner 2006; Storfer et al. 2010), and both methodology and underlying concepts of the field are under rapid and constant development. A number of major innovations and a high level of originality are required to fully merge existing population genetic theory with landscape ecology and to develop novel statistical approaches for measuring and predicting genetic patterns. The importance of simulation studies for this specific research has been emphasized in a number of recent articles (e.g., Balkenhol et al. 2009a; Epperson et al. 2010). Indeed, many of the major questions in landscape genetics require the development and application of sophisticated simulation tools to explore gene flow, genetic drift, mutation and natural selection in landscapes with a wide range of spatial and temporal complexities. In this issue, Jaquiery et al. (2011) provide an excellent example of such a simulation study for landscape genetics. Using a metapopulation simulation design and a novel 'scale of phenomena' approach, Jaquiery et al. (2011) demonstrate the utility and limitations of genetic distances for inferring landscape effects on effective dispersal.
引用
收藏
页码:667 / 670
页数:4
相关论文
共 15 条
[1]   Statistical approaches in landscape genetics: an evaluation of methods for linking landscape and genetic data [J].
Balkenhol, Niko ;
Waits, Lisette P. ;
Dezzani, Raymond J. .
ECOGRAPHY, 2009, 32 (05) :818-830
[2]   Identifying future research needs in landscape genetics: where to from here? [J].
Balkenhol, Niko ;
Gugerli, Felix ;
Cushman, Sam A. ;
Waits, Lisette P. ;
Coulon, Aurelie ;
Arntzen, J. W. ;
Holderegger, Rolf ;
Wagner, Helene H. .
LANDSCAPE ECOLOGY, 2009, 24 (04) :455-463
[3]   Spurious correlations and inference in landscape genetics [J].
Cushman, Samuel A. ;
Landguth, Erin L. .
MOLECULAR ECOLOGY, 2010, 19 (17) :3592-3602
[4]   Scale dependent inference in landscape genetics [J].
Cushman, Samuel A. ;
Landguth, Erin L. .
LANDSCAPE ECOLOGY, 2010, 25 (06) :967-979
[5]   Use of Empirically Derived Source-Destination Models to Map Regional Conservation Corridors [J].
Cushman, Samuel A. ;
McKelvey, Kevin S. ;
Schwartz, Michael K. .
CONSERVATION BIOLOGY, 2009, 23 (02) :368-376
[6]   A balanced view of scale in spatial statistical analysis [J].
Dungan, JL ;
Perry, JN ;
Dale, MRT ;
Legendre, P ;
Citron-Pousty, S ;
Fortin, MJ ;
Jakomulska, A ;
Miriti, M ;
Rosenberg, MS .
ECOGRAPHY, 2002, 25 (05) :626-640
[7]   Utility of computer simulations in landscape genetics [J].
Epperson, Bryan K. ;
McRae, Brad H. ;
Scribner, Kim ;
Cushman, Samuel A. ;
Rosenberg, Michael S. ;
Fortin, Marie-Josee ;
James, Patrick M. A. ;
Murphy, Melanie ;
Manel, Stephanie ;
Legendre, Pierre ;
Dale, Mark R. T. .
MOLECULAR ECOLOGY, 2010, 19 (17) :3549-3564
[8]   Optimizing dispersal and corridor models using landscape genetics [J].
Epps, Clinton W. ;
Wehausen, John D. ;
Bleich, Vernon C. ;
Torres, Steven G. ;
Brashares, Justin S. .
JOURNAL OF APPLIED ECOLOGY, 2007, 44 (04) :714-724
[9]   A new Bayesian method to identify the environmental factors that influence recent migration [J].
Faubet, Pierre ;
Gaggiotti, Oscar E. .
GENETICS, 2008, 178 (03) :1491-1504
[10]   A brief guide to landscape genetics [J].
Holderegger, Rolf ;
Wagner, Helene H. .
LANDSCAPE ECOLOGY, 2006, 21 (06) :793-796