Incorporating Spatial Structure in Stock Assessment: Movement Modeling in Marine Fish Population Dynamics

被引:152
作者
Goethel, Daniel R. [1 ]
Quinn, Terrance J., II [2 ]
Cadrin, Steven X. [1 ]
机构
[1] Univ Massachusetts, Sch Marine Sci & Technol, Fairhaven, MA USA
[2] Univ Alaska Fairbanks, Juneau Ctr, Sch Fisheries & Ocean Sci, Juneau, AK USA
来源
REVIEWS IN FISHERIES SCIENCE | 2011年 / 19卷 / 02期
关键词
movement; population dynamics; spatial modeling; stock assessment; mark-recapture; CAPTURE-RECAPTURE; YELLOWFIN TUNA; TAGGING DATA; FISHERIES; DIFFUSION; MORTALITY; RATES; SIZE; PARAMETERS; MANAGEMENT;
D O I
10.1080/10641262.2011.557451
中图分类号
S9 [水产、渔业];
学科分类号
0908 ;
摘要
Investigations into population structure have been at the forefront of fisheries research for decades, yet it is generally ignored in stock assessment models. As the complex nature of marine population structure has been uncovered, models have attempted to accurately portray it through the development of spatially explicit assessments that allow for movement between sub-populations. Although current tag-integrated movement models are highly complex, many arose from the relatively simple models of Beverton and Holt (1957). This article traces the historical development of these models and compares their features. Originally estimation of movement utilized only tag-recapture models, but now tag-integrated assessment models incorporate several sources of fishery, survey, and tag-recapture information to inform movement estimates. As spatial management measures become more widely used, it is increasingly important that assessment models include the spatial complexities of population structure and patterns of fishery removals, in order for more reliable monitoring of population rebuilding to take place. A generalized metapopulation model is proposed for use in fisheries stock assessment, which allows for adult movement among spatially discrete sub-populations. The input requirements for the model include region-specific catch-at-age, a tag-recapture dataset, and auxiliary information, such as a fishery-independent abundance index.
引用
收藏
页码:119 / 136
页数:18
相关论文
共 73 条
[1]  
Adam MS, 2002, AQUAT LIVING RESOUR, V15, P13
[2]   A spatially structured tagging model to estimate movement and fishing mortality rates for the blue shark (Prionace glauca) in the North Atlantic Ocean [J].
Aires-da-Silva, Alexandre M. ;
Maunder, Mark N. ;
Gallucci, Vincent F. ;
Kohler, Nancy E. ;
Hoey, John J. .
MARINE AND FRESHWATER RESEARCH, 2009, 60 (10) :1029-1043
[3]  
Aldenberg T, 1975, VIRTUAL POPULA UNPUB
[4]   ESTIMATION OF SIZE-SELECTIVITY AND MOVEMENT RATES FROM MARK RECOVERY DATA [J].
ANGANUZZI, A ;
HILBORN, R ;
SKALSKI, JR .
CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES, 1994, 51 (03) :734-742
[5]  
[Anonymous], STOCK IDENTIFICATION
[6]  
[Anonymous], 1989, POPULATION HARVESTIN
[7]  
[Anonymous], 1957, FISH INVEST MINIST A
[8]  
[Anonymous], 2002, ANAL MANAGEMENT ANIM
[9]  
[Anonymous], QUANTITATIVE FISH DY
[10]  
[Anonymous], [No title captured]