AUTOMATIC PARCELLATION OF CORTICAL SURFACES USING RANDOM FORESTS

被引:0
作者
Meng, Yu [1 ,2 ,3 ]
Li, Gang [2 ,3 ]
Gao, Yaozong [1 ,2 ,3 ]
Shen, Dinggang [2 ,3 ]
机构
[1] Univ N Carolina, Dept Comp Sci, Chapel Hill, NC 27599 USA
[2] Univ N Carolina, Dept Radiol, Chapel Hill, NC USA
[3] Univ N Carolina, BRIC, Chapel Hill, NC USA
来源
2015 IEEE 12TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI) | 2015年
关键词
Cortical surface parcellation; random forests; context feature; graph cuts; Haar-like features;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Automatic and accurate parcellation of cortical surfaces into anatomically and functionally meaningful regions is of fundamental importance in brain mapping. In this paper, we propose a new method leveraging random forests and graph cuts methods to parcellate cortical surfaces into a set of gyral-based regions, using multiple surface atlases with manual labels by experts. Specifically, our method first takes advantage of random forests and auto-context methods to learn the optimal utilization of cortical features for rough parcellation and then the graph cuts method to further refine the parcellation for improved accuracy and spatial consistency. Particularly, to capitalize on random forests, we propose a novel definition of Haar-like features on cortical surfaces based on spherical mapping. The proposed method has been validated on cortical surfaces from 39 adult brain MR images, each with 35 regions manually labeled by a neuroanatomist, achieving the average Dice ratio of 0.902, higher than the-state-of-art methods.
引用
收藏
页码:810 / 813
页数:4
相关论文
共 16 条
[1]   An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision [J].
Boykov, Y ;
Kolmogorov, V .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2004, 26 (09) :1124-1137
[2]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[3]   A generic framework for the parcellation of the cortical surface into gyri using geodesic Voronoi diagrams [J].
Cachia, A ;
Mangin, JF ;
Rivière, D ;
Papadopoulos-Orfanos, D ;
Kherif, F ;
Bloch, I ;
Régis, J .
MEDICAL IMAGE ANALYSIS, 2003, 7 (04) :403-416
[4]   An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest [J].
Desikan, Rahul S. ;
Segonne, Florent ;
Fischl, Bruce ;
Quinn, Brian T. ;
Dickerson, Bradford C. ;
Blacker, Deborah ;
Buckner, Randy L. ;
Dale, Anders M. ;
Maguire, R. Paul ;
Hyman, Bradley T. ;
Albert, Marilyn S. ;
Killiany, Ronald J. .
NEUROIMAGE, 2006, 31 (03) :968-980
[5]   Automatically parcellating the human cerebral cortex [J].
Fischl, B ;
van der Kouwe, A ;
Destrieux, C ;
Halgren, E ;
Ségonne, F ;
Salat, DH ;
Busa, E ;
Seidman, LJ ;
Goldstein, J ;
Kennedy, D ;
Caviness, V ;
Makris, N ;
Rosen, B ;
Dale, AM .
CEREBRAL CORTEX, 2004, 14 (01) :11-22
[6]   FreeSurfer [J].
Fischl, Bruce .
NEUROIMAGE, 2012, 62 (02) :774-781
[7]  
KONTSCHIEDER P, 2013, CVPR, P65, DOI DOI 10.1109/CVPR.2013.16
[8]   Simultaneous and consistent labeling of longitudinal dynamic developing cortical surfaces in infants [J].
Li, Gang ;
Wang, Li ;
Shi, Feng ;
Lin, Weili ;
Shen, Dinggang .
MEDICAL IMAGE ANALYSIS, 2014, 18 (08) :1274-1289
[9]   Automatic cortical sulcal parcellation based on surface principal direction flow field tracking [J].
Li, Gang ;
Guo, Lei ;
Nie, Jingxin ;
Liu, Tianming .
NEUROIMAGE, 2009, 46 (04) :923-937
[10]   Automatic labelling of the human cortical surface using sulcal basins [J].
Lohmann, G ;
von Cramon, DY .
MEDICAL IMAGE ANALYSIS, 2000, 4 (03) :179-188