TiO2 nanotubes antireflection coating design for GaAs solar cells

被引:14
作者
Saint-Andre, Simon [1 ,2 ]
Rodriguez, Daniel [3 ]
Perillo, Patricia [3 ]
Barrera, Marcela [1 ,2 ]
机构
[1] Comis Nacl Energia Atom, Dept Energia Solar, Av Gral Paz 1499, RA-1650 San Martin, Bs As, Argentina
[2] Inst Nanociencia & Nanotecnol CONICET, Av Gral Paz 1499, RA-1650 San Martin, Bs As, Argentina
[3] Comis Nacl Energia Atom, Dept Micro & Nanotecnol, Ctr Atom Constituyentes, GDTyPE, Av Gral Paz 1499, RA-1650 San Martin, Bs As, Argentina
关键词
ARC optimization; GaAs solar cells; TiO2; nanotubes; Numerical simulation; LOW-REFRACTIVE-INDEX; III-V COMPOUNDS; BROAD-BAND; OPTICAL-PROPERTIES; PERFORMANCE; LAYER; SIMULATION; FILMS;
D O I
10.1016/j.solmat.2021.111201
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The results of the optimization of antireflection films of TiO2 nanotubes on GaAs solar cells, non-encapsulated and encapsulated, are presented. The ARC forms a bilayer of porous TiO2 over a dense bottom. The films were prepared on Si and GaAs substrates via a versatile electrochemical anodization process which produces films with good optical performance. The thicknesses and porosity of the ARC were optimized numerically with a method based on maximizing the short circuit current. Using experimental indices, the minimum Rw was 1.81% for the non-encapsulated case. For the encapsulated case, the lowest Rw was 2.34%, where the porosity of the top layer was adjusted in addition to the thicknesses. In simulations of a GaAs solar cell, the addition of the optimized ARC resulted in a Jsc increase of 43.6% for the non-encapsulated case, and 36.7% for the encapsulated case.
引用
收藏
页数:9
相关论文
共 61 条
[1]   Near zero reflection by nanostructured anti-reflection coating design for Si substrates [J].
Al-Fandi, Mohamed ;
Makableh, Yahia F. ;
Khasawneh, Mohammad ;
Rabady, Rabi .
SUPERLATTICES AND MICROSTRUCTURES, 2018, 117 :115-120
[2]   Influence of anodization parameters on the expansion factor of TiO2 nanotubes [J].
Albu, Sergiu P. ;
Schmuki, Patrik .
ELECTROCHIMICA ACTA, 2013, 91 :90-95
[3]  
[Anonymous], 2019, ASTM E490-00a, DOI DOI 10.1520/E0490-00AR19
[4]  
[Anonymous], 2016, Multilayer optical calculations
[5]  
Bahrami A, 2013, INT J RENEW ENERGY R, V3, P79
[6]   Antireflecting-passivating dielectric films on crystalline silicon solar cells for space applications [J].
Barrera, M. ;
Pla, J. ;
Bocchi, C. ;
Migliori, A. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2008, 92 (09) :1115-1122
[7]   Numerical simulation of Ge solar cells using D-AMPS-1D code [J].
Barrera, Marcela ;
Rubinelli, Francisco ;
Rey-Stolle, Ignacio ;
Pla, Juan .
PHYSICA B-CONDENSED MATTER, 2012, 407 (16) :3282-3284
[8]   III-V compounds for solar cell applications [J].
Bett, AW ;
Dimroth, F ;
Stollwerck, G ;
Sulima, OV .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1999, 69 (02) :119-129
[9]   Design and simulation of antireflection coating systems for optoelectronic devices: Application to silicon solar cells [J].
Bouhafs, D ;
Moussi, A ;
Chikouche, A ;
Ruiz, JM .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 1998, 52 (1-2) :79-93
[10]   Sorption and optical properties of sol-gel thin films measured by X-Ray Reflectometry and Ellipsometric Porosimetry [J].
Cecilia Fuertes, Maria ;
Patricia Barrera, Marcela ;
Pla, Juan .
THIN SOLID FILMS, 2012, 520 (15) :4853-4862