List 2-distance -coloring of planar graphs without 4,5-cycles

被引:0
作者
Zhu, Haiyang [1 ]
Gu, Yu [1 ]
Sheng, Jingjun [1 ]
Lu, Xinzhong [2 ]
机构
[1] Air Force Logist Coll, Dept Flight Support Command, Xuzhou 221000, Jiangsu, Peoples R China
[2] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
关键词
2-Distance coloring; Planar graph; Wegner's conjecture; List L(2,1)-labeling; SQUARE; CHOOSABILITY; 4-CYCLES; GIRTH;
D O I
10.1007/s10878-018-0312-8
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Let and be the 2-distance chromatic number and list 2-distance chromatic number of a graph G, respectively. Wegner conjectured that for each planar graph G with maximum degree at least 4, if , and if . Let G be a planar graph without 4,5-cycles. We show that if , then . There exist planar graphs G with girth such that for arbitrarily large . In addition, we also discuss the list L(2, 1)-labeling number of G, and prove that for Delta >= 27.
引用
收藏
页码:1411 / 1424
页数:14
相关论文
共 21 条
  • [1] A unified approach to distance-two colouring of graphs on surfaces
    Amini, Omid
    Esperet, Louis
    Van den Heuvel, Jan
    [J]. COMBINATORICA, 2013, 33 (03) : 253 - 296
  • [2] Graphs with maximum degree Δ ≥ 17 and maximum average degree less than 3 are list 2-distance (Δ+2)-colorable
    Bonamy, Marthe
    Leveque, Benjamin
    Pinlou, Alexandre
    [J]. DISCRETE MATHEMATICS, 2014, 317 : 19 - 32
  • [3] Bondy J., 2008, GRADUATE TEXTS MATH
  • [4] List 2-distance (Δ+2)-coloring of planar graphs with girth 6 and Δ aparts per thousandyen 24
    Borodin, O. V.
    Ivanova, A. O.
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 2009, 50 (06) : 958 - 964
  • [5] Borodin OV, 2006, SIB ELECTRON MATH RE, V3, P355
  • [6] Borodin O.V., 2004, Siberian Electronic Math. Reports, V1, P129
  • [7] BORODIN OV, 1989, J REINE ANGEW MATH, V394, P180
  • [8] Borodin OV, 2002, TECHNICAL REPORT
  • [9] List-Coloring the Squares of Planar Graphs without 4-Cycles and 5-Cycles
    Cranston, Daniel W.
    Jaeger, Bobby
    [J]. JOURNAL OF GRAPH THEORY, 2017, 85 (04) : 721 - 737
  • [10] Coloring squares of planar graphs with girth six
    Dvorak, Zdenek
    Kral, Daniel
    Nejedly, Pavel
    Skrekovski, Riste
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (04) : 838 - 849