A finite element method for the Navier-Stokes equations in moving domain with application to hemodynamics of the left ventricle

被引:10
|
作者
Danilov, Alexander [1 ,2 ]
Lozovskiy, Alexander [1 ]
Olshanskii, Maxim [3 ]
Vassilevski, Yuri [1 ,2 ]
机构
[1] RAS, Inst Numer Math, Moscow 119333, Russia
[2] Moscow Inst Phys & Technol, Dolgoprudnyi 141701, Moscow Region, Russia
[3] Univ Houston, Dept Math, Houston, TX 77204 USA
基金
俄罗斯科学基金会;
关键词
Fluid-structure interaction; semi-implicit scheme; monolithic approach; blood flow; numerical stability; finite element method; SPACE; SIMULATION; FLOWS;
D O I
10.1515/rnam-2017-0021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper introduces a finite element method for the Navier-Stokes equations of incompressible viscous fluid in a time-dependent domain. The method is based on a quasi-Lagrangian formulation of the problem and handling the geometry in a time-explicit way. We prove that numerical solution satisfies a discrete analogue of the fundamental energy estimate. This stability estimate does not require a CFL time-step restriction. The method is further applied to simulation of a flow in a model of the left ventricle of a human heart, where the ventricle wall dynamics is reconstructed from a sequence of contrast enhanced Computed Tomography images.
引用
收藏
页码:225 / 236
页数:12
相关论文
共 50 条
  • [31] weighted least-squares finite element methods for the linearized Navier-Stokes equations
    Lee, Hsueh-Chen
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2014, 91 (09) : 1964 - 1985
  • [32] A PRECONDITIONER FOR THE FINITE ELEMENT APPROXIMATION TO THE ARBITRARY LAGRANGIAN-EULERIAN NAVIER-STOKES EQUATIONS
    Nordsletten, David
    Smith, Nicolas
    Kay, David
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (02) : 521 - 543
  • [33] Runge-Kutta Finite Element Method Based on the Characteristic for the Incompressible Navier-Stokes Equations
    Liao, Shaokai
    Zhang, Yan
    Chen, Da
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2019, 11 (06) : 1415 - 1435
  • [34] Characteristic-based operator-splitting finite element method for Navier-Stokes equations
    WANG DaGuo 1
    2 Department of Information Engineering
    3 Department of Underground Construction and Engineering
    4 Department of Civil and Structural Engineering
    Science China(Technological Sciences), 2011, (08) : 2157 - 2166
  • [35] A Modular Voigt Regularization of the Crank-Nicolson Finite Element Method for the Navier-Stokes Equations
    Rong, Y.
    Fiordilino, J. A.
    Shi, F.
    Cao, Y.
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 92 (03)
  • [36] Characteristic-based operator-splitting finite element method for Navier-Stokes equations
    DaGuo Wang
    HaiJiao Wang
    JuHua Xiong
    L. G. Tham
    Science China Technological Sciences, 2011, 54 : 2157 - 2166
  • [37] Adaptive meshless local maximum-entropy finite element method for Navier-Stokes equations
    Young, D. L.
    Shih, C-L
    Yen, L. J.
    Chu, C-R
    JOURNAL OF MECHANICS, 2024, 40 : 475 - 490
  • [38] Characteristic-based operator-splitting finite element method for Navier-Stokes equations
    Wang DaGuo
    Wang HaiJiao
    Xiong JuHua
    Tham, L. G.
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2011, 54 (08) : 2157 - 2166
  • [39] Coupling of Navier-Stokes equations with protein molecular dynamics and its application to hemodynamics
    Liu, YL
    Zhang, L
    Wang, XD
    Liu, WK
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2004, 46 (12) : 1237 - 1252
  • [40] ENERGY STABLE AND MOMENTUM CONSERVING HYBRID FINITE ELEMENT METHOD FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS
    Labeur, Robert Jan
    Wells, Garth N.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (02) : A889 - A913