Porous-based rheological model for tissue fluidisation

被引:3
作者
Asadipour, N. [1 ]
Trepat, X. [2 ,3 ,4 ]
Munoz, J. J. [1 ,5 ]
机构
[1] Univ Politecn Catalunya Barcelona Tech UPC, Dept Math, Lab Calcul Numer LaCaN, Barcelona 08036, Spain
[2] ICREA, Barcelona 08028, Spain
[3] Inst Bioengn Catalonia, Barcelona 08028, Spain
[4] Univ Barcelona, Fac Med, Ctr Invest Biomed Red Bioingn Biomat & Nanomed, Barcelona 08036, Spain
[5] Barcelona Grad Sch Math BGSMath, Barcelona, Spain
基金
欧洲研究理事会;
关键词
Fluidisation; Viscoelasticity; Softening; Cell remodelling; Cell rheology; INTERNAL VARIABLES; STRESS; STRAIN; BEHAVIOR;
D O I
10.1016/j.jmps.2016.07.002
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
It has been experimentally observed that cells exhibit a fluidisation process when subjected to a transient stretch, with an eventual recovery of the mechanical properties upon removal of the applied deformation. This fluidisation process is characterised by a decrease of the storage modulus and an increase of the phase angle. We propose a rheological model which is able to reproduce this combined mechanical response. The model is described in the context of continua and adapted to a cell-centred particle system that simulates cell-cell interactions. Mechanical equilibrium is coupled with two evolution laws: (i) one for the reference configuration, and (ii) another for the porosity or polymer density. The first law depends on the actual strain of the tissue, while the second assumes different remodelling rates during porosity increase and decrease. The theory is implemented on a particle based model and tested on a stretching experiment. The numerical results agree with the experimental measurements for different stretching magnitudes. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:535 / 549
页数:15
相关论文
共 38 条
[1]  
[Anonymous], CREEP RELAXATION NON
[2]   DRhoGEF2 Regulates Cellular Tension and Cell Pulsations in the Amnioserosa during Drosophila Dorsal Closure [J].
Azevedo, Dulce ;
Antunes, Marco ;
Prag, Soren ;
Ma, Xiaoyan ;
Hacker, Udo ;
Brodland, G. Wayne ;
Hutson, M. Shane ;
Solon, Jerome ;
Jacinto, Antonio .
PLOS ONE, 2011, 6 (09)
[3]  
Calvo B., 2011, INT J NUMER METHODS, V7
[4]   Reversible stress softening of actin networks [J].
Chaudhuri, Ovijit ;
Parekh, Sapun H. ;
Fletcher, Daniel A. .
NATURE, 2007, 445 (7125) :295-298
[5]   Fluidization and Resolidification of the Human Bladder Smooth Muscle Cell in Response to Transient Stretch [J].
Chen, Cheng ;
Krishnan, Ramaswamy ;
Zhou, Enhua ;
Ramachandran, Aruna ;
Tambe, Dhananjay ;
Rajendran, Kavitha ;
Adam, Rosalyn M. ;
Deng, Linhong ;
Fredberg, Jeffrey J. .
PLOS ONE, 2010, 5 (08)
[6]   On strain and stress in living cells [J].
Cox, Brian N. ;
Smith, David W. .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2014, 71 :239-252
[7]   Sacrificial bonds and hidden length: Unraveling molecular mesostructures in tough materials [J].
Fantner, GE ;
Oroudjev, E ;
Schitter, G ;
Golde, LS ;
Thurner, P ;
Finch, MM ;
Turner, P ;
Gutsmann, T ;
Morse, DE ;
Hansma, H ;
Hansma, PK .
BIOPHYSICAL JOURNAL, 2006, 90 (04) :1411-1418
[8]   A master relation defines the nonlinear viscoelasticity of single fibroblasts [J].
Fernández, P ;
Pullarkat, PA ;
Ott, A .
BIOPHYSICAL JOURNAL, 2006, 90 (10) :3796-3805
[9]   Elastic Behavior of cross-linked and bundled actin networks [J].
Gardel, ML ;
Shin, JH ;
MacKintosh, FC ;
Mahadevan, L ;
Matsudaira, P ;
Weitz, DA .
SCIENCE, 2004, 304 (5675) :1301-1305
[10]   Biological remodelling: Stationary energy, configuration change, internal variables and dissipation [J].
Garikipati, K. ;
Olberding, J. E. ;
Narayanan, H. ;
Arruda, E. M. ;
Grosh, K. ;
Calve, S. .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2006, 54 (07) :1493-1515