Spontaneous breaking of permutation symmetry in pseudo-Hermitian quantum mechanics

被引:8
作者
Li, Jun-Qing [1 ]
Miao, Yan-Gang [1 ,2 ,3 ,4 ]
机构
[1] Nankai Univ, Sch Phys, Tianjin 300071, Peoples R China
[2] Chinese Acad Sci, Kavli Inst Theoret Phys China, Beijing 100190, Peoples R China
[3] Univ Bonn, Bethe Ctr Theoret Phys, D-53115 Bonn, Germany
[4] Univ Bonn, Inst Phys, D-53115 Bonn, Germany
来源
PHYSICAL REVIEW A | 2012年 / 85卷 / 04期
基金
中国国家自然科学基金;
关键词
PT-SYMMETRY; SPECTRUM; REALITY;
D O I
10.1103/PhysRevA.85.042110
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
By adding an imaginary interacting term proportional to ip(1)p(2) to the Hamiltonian of a free anisotropic planar oscillator, we construct a model which is described by the PT-pseudo-Hermitian Hamiltonian with the permutation symmetry of two dimensions. We prove that our model is equivalent to the Pais-Uhlenbeck oscillator and thus establish a relationship between our PT-pseudo-Hermitian system and the fourth-order derivative oscillator model. We also point out the spontaneous breaking of permutation symmetry which plays a crucial role in giving a real spectrum free of interchange of positive and negative energy levels in our model. Moreover, we find that the permutation symmetry of two dimensions in our Hamiltonian corresponds to the identity (not in magnitude but in attribute) of two different frequencies in the Pais-Uhlenbeck oscillator, and reveal that the unequal-frequency condition imposed as a prerequisite upon the Pais-Uhlenbeck oscillator can reasonably be explained as the spontaneous breaking of this identity.
引用
收藏
页数:9
相关论文
共 50 条
[31]   On Bell-Like Inequalities and Pseudo-Hermitian Operators [J].
Fei, Shao-Ming .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2011, 50 (04) :1126-1133
[32]   Periodic pseudo-Hermitian Hamiltonian: Nonadiabatic geometric phase [J].
Maamache, M. .
PHYSICAL REVIEW A, 2015, 92 (03)
[33]   Poincare<acute accent> symmetries and representations in pseudo-Hermitian quantum field theory [J].
Sablevice, Esra ;
Millington, Peter .
PHYSICAL REVIEW D, 2024, 109 (06)
[34]   Formation of exceptional points in pseudo-Hermitian systems [J].
Starkov, Grigory A. ;
Fistul, Mikhail V. ;
Eremin, Ilya M. .
PHYSICAL REVIEW A, 2023, 108 (02)
[35]   Pseudo-Hermitian Hamiltonians: a tale of two potentials [J].
Jones, HF ;
Mateo, J .
CZECHOSLOVAK JOURNAL OF PHYSICS, 2005, 55 (09) :1117-1122
[36]   Level statistics of a pseudo-Hermitian Dicke model [J].
Deguchi, Tetsuo ;
Ghosh, Pijush K. ;
Kudo, Kazue .
PHYSICAL REVIEW E, 2009, 80 (02)
[37]   Truncations of a class of pseudo-Hermitian tridiagonal matrices [J].
Derevyagin, Maxim ;
Perotti, Luca ;
Wojtylak, Michal .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 438 (02) :738-758
[38]   Pseudo-Hermitian position and momentum operators, Hermitian Hamiltonian, and deformed oscillators [J].
Gavrilik, Alexandre ;
Kachurik, Ivan .
MODERN PHYSICS LETTERS A, 2019, 34 (01)
[39]   On the construction of a pseudo-Hermitian quantum system with a pre-determined metric in the Hilbert space [J].
Ghosh, Pijush K. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (12)
[40]   Band topology of pseudo-Hermitian phases through tensor Berry connections and quantum metric [J].
Zhu, Yan-Qing ;
Zheng, Wen ;
Zhu, Shi-Liang ;
Palumbo, Giandomenico .
PHYSICAL REVIEW B, 2021, 104 (20)