Hamiltonian dynamics and the entropy of the gravitational field

被引:8
作者
Rothman, T [1 ]
Anninos, P [1 ]
机构
[1] UNIV ILLINOIS,NATL CTR SUPERCOMP APPLICAT,URBANA,IL 61801
关键词
D O I
10.1016/S0375-9601(96)00841-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We take a statistical mechanics approach to investigate the function S = ln Omega as a possible ''gravitational entropy'', where Omega is the phase-space volume bounded by a Hamiltonian H. We calculate Omega for several cosmological models, attributing entropy to a lack of knowledge in the exact field configuration. We also compare our results with Penrose's C-2 hypothesis and the Bekenstein-Hawking entropy for black holes.
引用
收藏
页码:227 / 233
页数:7
相关论文
共 12 条
[1]  
Arnowitt R. L., 1962, GRAVITATION INTRO CU
[2]   BLACK HOLES AND ENTROPY [J].
BEKENSTEIN, JD .
PHYSICAL REVIEW D, 1973, 7 (08) :2333-2346
[3]  
BEKENSTEIN JD, GRQC9505012
[4]   ARROW OF TIME FOR A COLLAPSING, RADIATING SPHERE [J].
BONNOR, WB .
PHYSICS LETTERS A, 1987, 122 (6-7) :305-308
[5]   ENTROPY OF THE GRAVITATIONAL-FIELD [J].
BRANDENBERGER, R ;
MUKHANOV, V ;
PROKOPEC, T .
PHYSICAL REVIEW D, 1993, 48 (06) :2443-2455
[6]   ISOTROPIC SINGULARITIES IN COSMOLOGICAL MODELS [J].
GOODE, SW ;
WAINWRIGHT, J .
CLASSICAL AND QUANTUM GRAVITY, 1985, 2 (01) :99-115
[7]   BLACK-HOLES AND THERMODYNAMICS [J].
HAWKING, SW .
PHYSICAL REVIEW D, 1976, 13 (02) :191-197
[8]   THEORY OF COSMOLOGICAL PERTURBATIONS [J].
MUKHANOV, VF ;
FELDMAN, HA ;
BRANDENBERGER, RH .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1992, 215 (5-6) :203-333
[9]  
Penrose R., 1989, 14 TEX S REL ASTR
[10]  
ROTHMAN T, 1996, UNPUB PHYS REV D