Existence and amplitude bounds for irrotational water waves in finite depth

被引:3
作者
Kogelbauer, Florian [1 ]
机构
[1] Swiss Fed Inst Technol, Inst Mech Syst, Leonhardstr 21, CH-8092 Zurich, Switzerland
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2018年 / 376卷 / 2111期
关键词
irrotational water waves; amplitude bound; qualitative existence proof; BIFURCATION; REGULARITY;
D O I
10.1098/rsta.2017.0094
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We prove the existence of solutions to the irrotational water-wave problem in finite depth and derive an explicit upper bound on the amplitude of the nonlinear solutions in terms of the wavenumber, the total hydraulic head, the wave speed and the relative mass flux. Our approach relies upon a reformulation of the water-wave problem as a one-dimensional pseudo-differential equation and the Newton-Kantorovich iteration for Banach spaces. This article is part of the theme issue 'Nonlinear water waves'.
引用
收藏
页数:12
相关论文
共 16 条
[1]  
[Anonymous], 2003, PURE APPL MATH SERIE
[2]   The regularity and local bifurcation of steady periodic water waves [J].
Buffoni, B ;
Dancer, EN ;
Toland, JF .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2000, 152 (03) :207-240
[3]  
Buffoni B., 2003, PRIN SER APPL MATH, V9, DOI 10.1515/9781400884339
[4]  
Chen RM, ANN I H POINCARE C A
[5]   Exact steady periodic water waves with vorticity [J].
Constantin, A ;
Strauss, W .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (04) :481-527
[6]  
Constantin A., 2011, CBMS NSF REGIONAL C
[7]   Global bifurcation of steady gravity water waves with critical layers [J].
Constantin, Adrian ;
Strauss, Walter ;
Varvaruca, Eugen .
ACTA MATHEMATICA, 2016, 217 (02) :195-262
[8]   Steady Periodic Water Waves with Constant Vorticity: Regularity and Local Bifurcation [J].
Constantin, Adrian ;
Varvaruca, Eugen .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 199 (01) :33-67
[9]   A constructive existence proof for the extreme stokes wave [J].
Fraenkel, L. E. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2007, 183 (02) :187-214
[10]  
Hewitt Edwin, 1994, ABSTRACT HARMONIC AN