Early Diagnosis of Multiple Sclerosis Using Swept-Source Optical Coherence Tomography and Convolutional Neural Networks Trained with Data Augmentation

被引:22
作者
Lopez-Dorado, Almudena [1 ]
Ortiz, Miguel [2 ]
Satue, Maria [3 ]
Rodrigo, Maria J. [3 ]
Barea, Rafael [1 ]
Sanchez-Morla, Eva M. [4 ,5 ,6 ]
Cavaliere, Carlo [1 ]
Rodriguez-Ascariz, Jose M. [1 ]
Orduna-Hospital, Elvira [3 ]
Boquete, Luciano [1 ]
Garcia-Martin, Elena [3 ]
机构
[1] Univ Alcala, Dept Elect, Biomed Engn Grp, Alcala De Henares 28801, Spain
[2] Univ Luxembourg, Comp Vis Imaging & Machine Intelligence Res Grp, Interdisciplinary Ctr Secur Reliabil & Trust SnT, L-4365 Luxembourg, Luxembourg
[3] Univ Zaragoza, Miguel Servet Ophthalmol Innovat & Res Grp GIMSO, Dept Ophthalmol, Aragon Inst Hlth Res IIS Aragon, Zaragoza 50018, Spain
[4] Hosp 12 Octubre Res Inst i 12, Dept Psychiat, Madrid 28041, Spain
[5] Univ Complutense Madrid, Fac Med, Madrid 28040, Spain
[6] Biomed Res Networking Ctr Mental Hlth CIBERSAM, Madrid 28029, Spain
关键词
multiple sclerosis; optical coherence tomography; convolutional neural network; generative adversarial network; SEGMENTATION; MISDIAGNOSIS; PROGRESSION; IMPAIRMENT; BIOMARKER;
D O I
10.3390/s22010167
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Background: The aim of this paper is to implement a system to facilitate the diagnosis of multiple sclerosis (MS) in its initial stages. It does so using a convolutional neural network (CNN) to classify images captured with swept-source optical coherence tomography (SS-OCT). Methods: SS-OCT images from 48 control subjects and 48 recently diagnosed MS patients have been used. These images show the thicknesses (45 x 60 points) of the following structures: complete retina, retinal nerve fiber layer, two ganglion cell layers (GCL+, GCL++) and choroid. The Cohen distance is used to identify the structures and the regions within them with greatest discriminant capacity. The original database of OCT images is augmented by a deep convolutional generative adversarial network to expand the CNN's training set. Results: The retinal structures with greatest discriminant capacity are the GCL++ (44.99% of image points), complete retina (26.71%) and GCL+ (22.93%). Thresholding these images and using them as inputs to a CNN comprising two convolution modules and one classification module obtains sensitivity = specificity = 1.0. Conclusions: Feature pre-selection and the use of a convolutional neural network may be a promising, nonharmful, low-cost, easy-to-perform and effective means of assisting the early diagnosis of MS based on SS-OCT thickness data.
引用
收藏
页数:25
相关论文
共 83 条
[21]   Early diagnosis of multiple sclerosis by OCT analysis using Cohen's d method and a neural network as classifier [J].
Garcia-Martin, E. ;
Ortiz, M. ;
Boquete, L. ;
Sanchez-Morla, E. M. ;
Barea, R. ;
Cavaliere, C. ;
Vilades, E. ;
Orduna, E. ;
Rodrigo, M. J. .
COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 129 (129)
[22]   Retinal and Optic Nerve Degeneration in Patients with Multiple Sclerosis Followed up for 5 Years [J].
Garcia-Martin, Elena ;
Ara, Jose R. ;
Martin, Jesus ;
Almarcegui, Carmen ;
Dolz, Isabel ;
Vilades, Elisa ;
Gil-Arribas, Laura ;
Fernandez, Francisco J. ;
Polo, Vicente ;
Larrosa, Jose M. ;
Pablo, Luis E. ;
Satue, Maria .
OPHTHALMOLOGY, 2017, 124 (05) :688-696
[23]   Prevalence and Diagnosis of Neurological Disorders Using Different Deep Learning Techniques: A Meta-Analysis [J].
Gautam, Ritu ;
Sharma, Manik .
JOURNAL OF MEDICAL SYSTEMS, 2020, 44 (02)
[24]  
Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672
[25]   Deep learning based topology guaranteed surface and MME segmentation of multiple sclerosis subjects from retinal OCT [J].
He, Yufan ;
Carass, Aaron ;
Liu, Yihao ;
Jedynak, Bruno M. ;
Solomon, Sharon D. ;
Saidha, Shiv ;
Calabresi, Peter A. ;
Prince, Jerry L. .
BIOMEDICAL OPTICS EXPRESS, 2019, 10 (10) :5042-5058
[26]   A technical view on neural architecture search [J].
Hu, Yi-Qi ;
Yu, Yang .
INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2020, 11 (04) :795-811
[27]   ECG Arrhythmia Classification Using STFT-Based Spectrogram and Convolutional Neural Network [J].
Huang, Jingshan ;
Chen, Binqiang ;
Yao, Bin ;
He, Wangpeng .
IEEE ACCESS, 2019, 7 :92871-92880
[28]   RECEPTIVE FIELDS, BINOCULAR INTERACTION AND FUNCTIONAL ARCHITECTURE IN CATS VISUAL CORTEX [J].
HUBEL, DH ;
WIESEL, TN .
JOURNAL OF PHYSIOLOGY-LONDON, 1962, 160 (01) :106-&
[29]  
Ioffe S, 2015, PR MACH LEARN RES, V37, P448
[30]   Incidence of multiple sclerosis misdiagnosis in referrals to two academic centers [J].
Kaisey, Marwa ;
Solomon, Andrew J. ;
Luu, Michael ;
Giesser, Barbara S. ;
Sicotte, Nancy L. .
MULTIPLE SCLEROSIS AND RELATED DISORDERS, 2019, 30 :51-56