Recent Progress in Flax Fiber-Based Functional Composites

被引:34
作者
Li, Hongbin [1 ,2 ]
Tang, Rongrong [1 ]
Dai, Jiliang [1 ]
Wang, Zixuan [3 ]
Meng, Shiqi [1 ]
Zhang, Xiang [4 ]
Cheng, Feng [2 ]
机构
[1] Qiqihar Univ, Coll Light Ind & Text, Qiqihar 161006, Heilongjiang, Peoples R China
[2] Harbin Inst Technol, Sch Chem & Chem Engn, MIIT Key Lab Crit Mat Technol New Energy Convers, Harbin 150001, Peoples R China
[3] Johns Hopkins Univ, Dept Biomed Engn, Baltimore, MD 21287 USA
[4] Zhengzhou Univ, Natl Ctr Int Joint Res Micronano Molding Technol, Sch Mech & Safety Engn, Zhengzhou 450001, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Flax fiber; Composite; Energy; Biomedical; Environment; MECHANICAL-PROPERTIES; CHEMICAL-MODIFICATION; SILVER NANOPARTICLES; SURFACE; BEHAVIOR; COMPRESSION; SEPARATION; CELLULOSE; FABRICS; IMPACT;
D O I
10.1007/s42765-021-00115-6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In recent years, flax fiber as a green and renewable resources have attracted considerable attention to be used as reinforcement in composites, using various technology. This review presents a summary of recent developments of flax fiber-based functional composites toward energy, biomedical, and environment. Firstly, we analyze the design and fabrication strategies, which are used for preparation of flax-based functional composites. The most promising applications of flax fiber-based composites are discussed subsequently. It is believed that flax fiber as a functional composites will play a crucial role in the field of energy, biomedical, and environment mainly attributed to its unique properties, such as specific mechanical properties, good biocompatibility, eco-friendliness, cost-effectiveness, and amenability to various functional design and manufacturing needs.
引用
收藏
页码:171 / 184
页数:14
相关论文
共 104 条
[1]   Comparison of the Moisture Adsorption Properties of Starch Particles and Flax Fiber Coatings for Energy Wheel Applications [J].
Alabi, Wahab O. ;
Karoyo, Abdalla H. ;
Krishnan, Easwaran N. ;
Dehabadi, Leila ;
Wilson, Lee D. ;
Simonson, Carey J. .
ACS OMEGA, 2020, 5 (16) :9529-9539
[2]   Biodegradability of Nonwoven Flax Fiber Reinforced Polylactic Acid Biocomposites [J].
Alimuzzaman, Shah ;
Gong, R. H. ;
Akonda, Mahmudul .
POLYMER COMPOSITES, 2014, 35 (11) :2094-2102
[3]   Multifunctional green silver nanoparticles in pharmaceutical and biomedical applications [J].
AlMasoud, Najla ;
Alomar, Taghrid S. ;
Awad, Manal A. ;
El-Tohamy, Maha F. ;
Soliman, Dina A. .
GREEN CHEMISTRY LETTERS AND REVIEWS, 2020, 13 (04) :51-62
[4]  
Amatosa T. A., 2020, SPECTA J TECHNOL, V4, P41, DOI [10.35718/specta.v4i1.162, DOI 10.35718/SPECTA.V4I1.162]
[5]   Preparation of hybrid poly(lactic acid)/flax composites by the insert overmolding process: Evaluation of mechanical performance and thermomechanical properties [J].
Andrzejewski, Jacek ;
Szostak, Marek .
JOURNAL OF APPLIED POLYMER SCIENCE, 2021, 138 (02)
[6]   Effect of fabric architecture on the shear and impact properties of natural fibre reinforced composites [J].
Awais, Habib ;
Nawab, Yasir ;
Anjang, A. ;
Akil, Hazizan Md ;
Abidin, M. Shukur Zainol .
COMPOSITES PART B-ENGINEERING, 2020, 195
[7]   Direct Comparison of the Structural Compression Characteristics of Natural and Synthetic Fiber-Epoxy Composites: Flax, Jute, Hemp, Glass and Carbon Fibers [J].
Bambach, Mike R. .
FIBERS, 2020, 8 (10) :1-14
[8]   Biodegradable composites based on flax/polyhydroxybutyrate and its copolymer with hydroxyvalerate [J].
Barkoula, N. M. ;
Garkhail, S. K. ;
Peijs, T. .
INDUSTRIAL CROPS AND PRODUCTS, 2010, 31 (01) :34-42
[9]   Comment on "30,000-Year-Old Wild Flax Fibers" [J].
Bergfjord, C. ;
Karg, S. ;
Rast-Eicher, A. ;
Nosch, M. -L. ;
Mannering, U. ;
Allaby, R. G. ;
Murphy, B. M. ;
Holst, B. .
SCIENCE, 2010, 328 (5986)
[10]   Cellulose nanocomposites: Fabrication and biomedical applications [J].
Joseph B. ;
Sagarika V.K. ;
Sabu C. ;
Kalarikkal N. ;
Thomas S. .
Journal of Bioresources and Bioproducts, 2020, 5 (04) :223-237