Caveolae and intracellular trafficking of cholesterol

被引:97
作者
Fielding, CJ [1 ]
Fielding, PE
机构
[1] Univ Calif San Francisco, Cardiovasc Res Inst, San Francisco, CA 94193 USA
[2] Univ Calif San Francisco, Dept Physiol, San Francisco, CA 94193 USA
[3] Univ Calif San Francisco, Dept Med, San Francisco, CA 94193 USA
关键词
caveolae; caveolin; free cholesterol; signaling; trafficking;
D O I
10.1016/S0169-409X(01)00140-5
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Caveolae, free cholesterol (FC)-rich microdomains of the plasma membrane, are both a terminus for the intracellular transit of newly synthesized and recycling cellular FC, and a site for FC efflux to the extracellular medium. The same domains play key roles as locations for the assembly of signaling complexes and for the endocytosis of selected ligands. Caveolin, the major structural protein of caveolae, plays a regulatory role in growth, the cell cycle, and cell adhesion. Each of these functions is FC-dependent. Caveolae appear to act as both sensors and regulators of cellular FC content, and in this way mediate an array of membrane-dependent cell functions. (C) 2001 Elsevier Science BY All rights reserved.
引用
收藏
页码:251 / 264
页数:14
相关论文
共 119 条
[1]   The caveolae membrane system [J].
Anderson, RGW .
ANNUAL REVIEW OF BIOCHEMISTRY, 1998, 67 :199-225
[2]   Tyrosine phosphorylation of caveolin-1 in the endothelium [J].
Aoki, T ;
Nomura, R ;
Fujimoto, T .
EXPERIMENTAL CELL RESEARCH, 1999, 253 (02) :629-636
[3]   Murine SR-BI, a high density lipoprotein receptor that mediates selective lipid uptake, is N-glycosylated and fatty acylated and colocalizes with plasma membrane caveolae [J].
Babitt, J ;
Trigatti, B ;
Rigotti, A ;
Smart, EJ ;
Anderson, RGW ;
Xu, SZ ;
Krieger, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (20) :13242-13249
[4]   ATPase-defective mammalian VPS4 localizes to aberrant endosomes and impairs cholesterol trafficking [J].
Bishop, N ;
Woodmane, P .
MOLECULAR BIOLOGY OF THE CELL, 2000, 11 (01) :227-239
[5]   p53 regulates caveolin gene transcription, cell cholesterol, and growth by a novel mechanism [J].
Bist, A ;
Fielding, CJ ;
Fielding, PE .
BIOCHEMISTRY, 2000, 39 (08) :1966-1972
[6]   Two sterol regulatory element-like sequences mediate up-regulation of caveolin gene transcription in response to low density lipoprotein free cholesterol [J].
Bist, A ;
Fielding, PE ;
Fielding, CJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (20) :10693-10698
[7]   Regulation of E2F: a family of transcription factors involved in proliferation control [J].
Black, AR ;
Azizkhan-Clifford, J .
GENE, 1999, 237 (02) :281-302
[8]   Intracellular cholesterol trafficking: role of the NPC1 protein [J].
Blanchette-Mackie, EJ .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR AND CELL BIOLOGY OF LIPIDS, 2000, 1486 (01) :171-183
[9]   The correlation of ATP-binding cassette 1 mRNA levels with cholesterol efflux from various cell lines [J].
Bortnick, AE ;
Rothblat, GH ;
Stoudt, G ;
Hoppe, KL ;
Royer, LJ ;
McNeish, J ;
Francone, OL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (37) :28634-28640
[10]   CHOLESTEROL AND THE GOLGI-APPARATUS [J].
BRETSCHER, MS ;
MUNRO, S .
SCIENCE, 1993, 261 (5126) :1280-1281