NMR Spectroscopy Combined with Machine Learning Approaches for Age Prediction in Healthy and Parkinson's Disease Cohorts through Metabolomic Fingerprints

被引:2
作者
Dimitri, Giovanna Maria [1 ,2 ]
Meoni, Gaia [3 ,4 ,5 ]
Tenori, Leonardo [3 ,4 ,5 ]
Luchinat, Claudio [3 ,4 ,5 ]
Lio, Pietro [2 ]
机构
[1] Univ Siena, Dipartimento Ingn Informaz & Sci Matemat DIISM, I-53100 Siena, Italy
[2] Univ Cambridge, Dept Comp Sci & Technol, Cambridge CB3 0FD, England
[3] Univ Florence, Magnet Resonance Ctr CERM, I-50019 Florence, Italy
[4] Univ Florence, Dept Chem Ugo Schiff, I-50019 Florence, Italy
[5] Consorzio Interuniv Risonanze Magnet Met Prot CIR, I-50019 Florence, Italy
来源
APPLIED SCIENCES-BASEL | 2022年 / 12卷 / 18期
基金
欧盟地平线“2020”;
关键词
machine learning; metabolomics aging; spectrum; metabolites; lipids; Parkinson's disease; biological age; REVEAL;
D O I
10.3390/app12188954
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Biological aging can be affected by several factors such as drug treatments and pathological conditions. Metabolomics can help in the estimation of biological age by analyzing the differences between predicted and actual chronological age in different subjects. In this paper, we compared three different and well-known machine learning approaches-SVM, ElasticNet, and PLS-to build a model based on the H-1-NMR metabolomic data of serum samples, able to predict chronological age in control individuals. Then, we tested these models in two pathological cohorts of de novo and advanced PD patients. The discrepancies observed between predicted and actual age in patients are interpreted as a sign of a (pathological) biological aging process.
引用
收藏
页数:11
相关论文
共 30 条
  • [1] [Anonymous], REPRODUCIBLE METABOL
  • [2] [Anonymous], LIPOPROTEIN SUBCLASS
  • [3] A metabolic view on menopause and ageing
    Auro, Kirsi
    Joensuu, Anni
    Fischer, Krista
    Kettunen, Johannes
    Salo, Perttu
    Mattsson, Hannele
    Niironen, Marjo
    Kaprio, Jaakko
    Eriksson, Johan G.
    Lehtimaki, Terho
    Raitakari, Olli
    Jula, Antti
    Tiitinen, Aila
    Jauhiainen, Matti
    Soininen, Pasi
    Kangas, Antti J.
    Kahonen, Mika
    Havulinna, Aki S.
    Ala-Korpela, Mika
    Salomaa, Veikko
    Metspalu, Andres
    Perola, Markus
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [4] Predicting Age Using Neuroimaging: Innovative Brain Ageing Biomarkers
    Cole, James H.
    Franke, Katja
    [J]. TRENDS IN NEUROSCIENCES, 2017, 40 (12) : 681 - 690
  • [5] Metabolic Signatures of Extreme Longevity in Northern Italian Centenarians Reveal a Complex Remodeling of Lipids, Amino Acids, and Gut Microbiota Metabolism
    Collino, Sebastiano
    Montoliu, Ivan
    Martin, Francois-Pierre J.
    Scherer, Max
    Mari, Daniela
    Salvioli, Stefano
    Bucci, Laura
    Ostan, Rita
    Monti, Daniela
    Biagi, Elena
    Brigidi, Patrizia
    Franceschi, Claudio
    Rezzi, Serge
    [J]. PLOS ONE, 2013, 8 (03):
  • [6] Lipid and metabolite correlation networks specific to clinical and biochemical covariate show differences associated with sexual dimorphism in a cohort of nonagenarians
    Di Cesare, Francesca
    Tenori, Leonardo
    Meoni, Gaia
    Gori, Anna Maria
    Marcucci, Rossella
    Giusti, Betti
    Molino-Lova, Raffaele
    Macchi, Claudio
    Pancani, Silvia
    Luchinat, Claudio
    Saccenti, Edoardo
    [J]. GEROSCIENCE, 2022, 44 (02) : 1109 - 1128
  • [7] Scales in Parkinson’s disease
    Georg Ebersbach
    Horst Baas
    Ilona Csoti
    Martina Müngersdorf
    Günther Deuschl
    [J]. Journal of Neurology, 2006, 253 (Suppl 4) : iv32 - iv35
  • [8] NMR for sample quality assessment in metabolomics
    Ghini, Veronica
    Quaglio, Deborah
    Luchinat, Claudio
    Turano, Paola
    [J]. NEW BIOTECHNOLOGY, 2019, 52 : 25 - 34
  • [9] Measuring Biological Age via Metabonomics: The Metabolic Age Score
    Hertel, Johannes
    Friedrich, Nele
    Wittfeld, Katharina
    Pietzner, Maik
    Budde, Kathrin
    Van der Auwera, Sandra
    Lohmann, Tobias
    Teumer, Alexander
    Voelzke, Henry
    Nauck, Matthias
    Grabe, Hans Joergen
    [J]. JOURNAL OF PROTEOME RESEARCH, 2016, 15 (02) : 400 - 410
  • [10] PARKINSONISM - ONSET PROGRESSION AND MORTALITY
    HOEHN, MM
    YAHR, MD
    [J]. NEUROLOGY, 1967, 17 (05) : 427 - &