Enhanced electrical conductivity in graphene-copper multilayer composite

被引:23
作者
Pan, Chaochao [1 ]
Gaur, Anand P. S. [1 ]
Lynn, Matthew [2 ]
Olson, Madison P. [1 ]
Ouyang, Gaoyuan [3 ]
Cui, Jun [1 ,3 ]
机构
[1] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA
[2] Ames Lab, Sensit Instrument Facil, Ames, IA 50011 USA
[3] Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA
关键词
ELECTRONIC-STRUCTURE; MECHANICAL-PROPERTIES; CARBON NANOTUBES; HIGH-QUALITY; MICROSTRUCTURE; RESISTIVITY; STRENGTH; FILMS;
D O I
10.1063/5.0073879
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
For many years, researchers have been trying to make a material more conductive than silver by incorporating carbon nanotubes or graphene into copper to form a composite material. However, after a decade-long effort, only a few groups reported successful results, raising concerns about the feasibility of this composite approach. Here, we report our effort to validate the multilayer graphene-copper composite approach for improving electrical conductivity. We demonstrate that, with an estimated 0.008 vol. % graphene addition, copper's electrical conductivity was improved to 104.2% of International Annealed Copper Standard (IACS) at room temperature. If the copper substrate used to make the multilayer composite is discounted using the parallel resistance model, the conductivity is calculated to be 185% IACS. This result could be further improved if the thickness of the copper layers can be further reduced. (c) 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:6
相关论文
共 49 条
[1]   Sorting carbon nanotubes by electronic structure using density differentiation [J].
Arnold, Michael S. ;
Green, Alexander A. ;
Hulvat, James F. ;
Stupp, Samuel I. ;
Hersam, Mark C. .
NATURE NANOTECHNOLOGY, 2006, 1 (01) :60-65
[2]   Graphene: synthesis and applications [J].
Avouris, Phaedon ;
Dimitrakopoulos, Christos .
MATERIALS TODAY, 2012, 15 (03) :86-97
[3]   Electrical properties and applications of carbon nanotube structures [J].
Bandaru, Prabhakar R. .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2007, 7 (4-5) :1239-1267
[4]  
Banhart F, 2011, ACS NANO, V5, P26, DOI [10.1021/nn102598m, 10.1016/B978-0-08-102053-1.00005-3]
[5]   Experimental studies of the electronic structure of graphene [J].
Bostwick, Aaron ;
McChesney, Jessica ;
Ohta, Taisuke ;
Rotenberg, Eli ;
Seyller, Thomas ;
Horn, Karsten .
PROGRESS IN SURFACE SCIENCE, 2009, 84 (11-12) :380-413
[6]   Single-step deposition of high-mobility graphene at reduced temperatures [J].
Boyd, D. A. ;
Lin, W. -H. ;
Hsu, C. -C. ;
Teague, M. L. ;
Chen, C. -C. ;
Lo, Y. -Y. ;
Chan, W. -Y. ;
Su, W. -B. ;
Cheng, T. -C. ;
Chang, C. -S. ;
Wu, C. -I. ;
Yeh, N. -C. .
NATURE COMMUNICATIONS, 2015, 6
[7]   Ultrahigh Electrical Conductivity of Graphene Embedded in Metals [J].
Cao, Mu ;
Xiong, Ding-Bang ;
Yang, Li ;
Li, Shuaishuai ;
Xie, Yiqun ;
Guo, Qiang ;
Li, Zhiqiong ;
Adams, Horst ;
Gu, Jiajun ;
Fan, Tongxiang ;
Zhang, Xiaohui ;
Zhang, Di .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (17)
[8]   Aligning graphene in bulk copper: Nacre-inspired nanolaminated architecture coupled with in-situ processing for enhanced mechanical properties and high electrical conductivity [J].
Cao, Mu ;
Xiong, Ding-Bang ;
Tan, Zhanqiu ;
Ji, Gang ;
Amin-Ahmadi, Behnam ;
Guo, Qiang ;
Fan, Genlian ;
Guo, Cuiping ;
Li, Zhiqiang ;
Zhang, Di .
CARBON, 2017, 117 :65-74
[9]   First-principles study of metal adatom adsorption on graphene [J].
Chan, Kevin T. ;
Neaton, J. B. ;
Cohen, Marvin L. .
PHYSICAL REVIEW B, 2008, 77 (23)
[10]   Effects of graphene content on the microstructure and properties of copper matrix composites [J].
Chen, Fanyan ;
Ying, Jiamin ;
Wang, Yifei ;
Du, Shiyu ;
Liu, Zhaoping ;
Huang, Qing .
CARBON, 2016, 96 :836-842