Approximation degree of a Kantorovich variant of Stancu operators based on Polya-Eggenberger distribution

被引:9
作者
Agrawal, P. N. [1 ]
Acu, Ana Maria [2 ]
Sidharth, Manjari [1 ]
机构
[1] Indian Inst Technol Roorkee, Dept Math, Roorkee 247667, Uttar Pradesh, India
[2] Lucian Blaga Univ Sibiu, Dept Math & Informat, Str Dr I Ratiu 5-7, Sibiu 550012, Romania
关键词
Polya-Eggenberger distribution; Lipschitz class function; Ditzian-Totik modulus of smoothness; Bounded variation; WEIGHTED APPROXIMATION; DURRMEYER OPERATORS; CONVERGENCE; DERIVATIVES; THEOREMS;
D O I
10.1007/s13398-017-0461-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is a continuation of the work done by Deo et al. (Appl. Math. Comput. 273, 281-289, 2016), in which the authors have established some approximation properties of the Stancu-Kantorovich operators based on Polya-Eggenberger distribution. We obtain some direct results for these operators by means of the Lipschitz class function, the modulus of continuity and the weighted space. Also, we study an approximation theorem with the aid of the unified Ditzian-Totik modulus of smoothness phi(f;t),01 and the rate of convergence of the operators for the functions having a derivative which is locally of bounded variation on [0, infinity).
引用
收藏
页码:137 / 156
页数:20
相关论文
共 25 条
[1]  
Acar T., 2014, General Mathematics, V22, P27
[2]  
Acar T, 2016, J INEQUAL APPL, DOI 10.1186/s13660-016-1045-9
[3]   Approximation by modified Szasz-Durrmeyer operators [J].
Acar, Tuncer ;
Ulusoy, Gulsum .
PERIODICA MATHEMATICA HUNGARICA, 2016, 72 (01) :64-75
[4]   Asymptotic Formulas for Generalized Szasz-Mirakyan Operators [J].
Acar, Tuncer .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 263 :233-239
[5]   Rate of convergence for generalized Szasz operators [J].
Acar, Tuncer ;
Gupta, Vijay ;
Aral, Ali .
BULLETIN OF MATHEMATICAL SCIENCES, 2011, 1 (01) :99-113
[6]   On the Generalized Szasz-Mirakyan Operators [J].
Aral, A. ;
Inoan, D. ;
Rasa, I. .
RESULTS IN MATHEMATICS, 2014, 65 (3-4) :441-452
[7]   Weighted Approximation by New Bernstein-Chlodowsky-Gadjiev Operators [J].
Aral, Ali ;
Acar, Tuncer .
FILOMAT, 2013, 27 (02) :371-380
[8]  
BASKAKOV VA, 1957, DOKL AKAD NAUK SSSR+, V113, P249
[9]   Bernstein-type operators which preserve polynomials [J].
Cardenas-Morales, D. ;
Garrancho, P. ;
Rasa, I. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (01) :158-163
[10]   Stancu-Kantorovich operators based on inverse Polya-Eggenberger distribution [J].
Deo, Naokant ;
Dhamija, Minakshi ;
Miclaus, Dan .
APPLIED MATHEMATICS AND COMPUTATION, 2016, 273 :281-289