Unveiling the Synergy of O-Vacancy and Heterostructure over MoO3-x/MXene for N2 Electroreduction to NH3

被引:289
作者
Chu, Ke [1 ]
Luo, Yaojing [1 ]
Shen, Peng [1 ]
Li, Xingchuan [1 ]
Li, Qingqing [1 ]
Guo, Yali [1 ]
机构
[1] Lanzhou Jiaotong Univ, Sch Mat Sci & Engn, Lanzhou 730070, Peoples R China
基金
中国国家自然科学基金;
关键词
density functional theory; electrocatalytic nitrogen reduction; heterostructures; in situ spectroscopy; molecular dynamics simulations; O-vacancies; EFFICIENT ELECTROCATALYST; DURABLE ELECTROCATALYST; NITROGEN-FIXATION; OXYGEN-VACANCIES; S-VACANCIES; REDUCTION; GRAPHENE; AMMONIA; NANOSHEETS; MXENE;
D O I
10.1002/aenm.202103022
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The electrochemical N-2 reduction reaction (NRR) offers a promising approach for sustainable NH3 production, and modulating the structural/electronic configurations of the catalyst materials with optimized electrocatalytic properties is pivotal for achieving high-efficiency NRR electrocatalysis. Herein, vacancy and heterostructure engineering are rationally integrated to explore O-vacancy-rich MoO3-x anchored on Ti3C2Tx-MXene (MoO3-x/MXene) as a highly active and selective NRR electrocatalyst, achieving an exceptional NRR activity with an NH3 yield of 95.8 mu g h(-1) mg(-1) (-0.4 V) and a Faradaic efficiency of 22.3% (-0.3 V). A combination of in situ spectroscopy, molecular dynamics simulations and density functional theory computations is employed to unveil the synergistic effect of O-vacancies and heterostructures for the NRR, which demonstrates that O-vacancies on MoO3-x serve as the active sites for N-2 chemisorption and activation, while the MXene substrate can further regulate the O-vacancy sites to break the scaling relation to effectively stabilize *N-2/*N2H while destabilizing *NH2/*NH3, resulting in more optimized binding affinity of NRR intermediates toward reduced energy barriers and an enhanced NRR activity for MoO3-x/MXene.
引用
收藏
页数:11
相关论文
共 58 条
[1]   Advances in Electrocatalytic N2 Reduction-Strategies to Tackle the Selectivity Challenge [J].
Chen, Gao-Feng ;
Ren, Shiyu ;
Zhang, Lili ;
Cheng, Hui ;
Luo, Yaru ;
Zhu, Kehan ;
Ding, Liang-Xin ;
Wang, Haihui .
SMALL METHODS, 2019, 3 (06)
[2]   Boron Nitride Quantum Dots/Ti3C2Tx-MXene Heterostructure For Efficient Electrocatalytic Nitrogen Fixation [J].
Chu, Ke ;
Li, Xingchuan ;
Tian, Ye ;
Li, Qingqing ;
Guo, Yali .
ENERGY & ENVIRONMENTAL MATERIALS, 2022, 5 (04) :1303-1309
[3]   Synergistic Enhancement of Electrocatalytic Nitrogen Reduction Over Boron Nitride Quantum Dots Decorated Nb2CTx-MXene [J].
Chu, Ke ;
Li, Xingchuan ;
Li, Qingqing ;
Guo, Yali ;
Zhang, Hu .
SMALL, 2021, 17 (40)
[4]   Amorphization activated FeB2 porous nanosheets enable efficient electrocatalytic N2 fixation [J].
Chu, Ke ;
Gu, Weicong ;
Li, Qingqing ;
Liu, Yaping ;
Tian, Ye ;
Liu, Wuming .
JOURNAL OF ENERGY CHEMISTRY, 2021, 53 :82-89
[5]   Mo-doped SnS2 with enriched S-vacancies for highly efficient electrocatalytic N2 reduction: the critical role of the Mo-Sn-Sn trimer [J].
Chu, Ke ;
Wang, Jing ;
Liu, Ya-ping ;
Li, Qing-qing ;
Guo, Ya-li .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (15) :7117-7124
[6]   Filling the nitrogen vacancies with sulphur dopants in graphitic C3N4 for efficient and robust electrocatalytic nitrogen reduction [J].
Chu, Ke ;
Li, Qing-qing ;
Liu, Ya-ping ;
Wang, Jing ;
Cheng, Yong-hua .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 267
[7]   Efficient Electrocatalytic Nitrogen Fixation on FeMoO4 Nanorods [J].
Chu, Ke ;
Li, Qing-qing ;
Cheng, Yong-hua ;
Liu, Ya-ping .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (10) :11789-11796
[8]   Electronically Coupled SnO2 Quantum Dots and Graphene for Efficient Nitrogen Reduction Reaction [J].
Chu, Ke ;
Liu, Ya-ping ;
Li, Yu-biao ;
Wang, Jing ;
Zhang, Hu .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (35) :31806-31815
[9]   NiO Nanodots on Graphene for Efficient Electrochemical N2 Reduction to NH3 [J].
Chu, Ke ;
Liu, Ya-ping ;
Wang, Jing ;
Zhang, Hu .
ACS APPLIED ENERGY MATERIALS, 2019, 2 (03) :2288-2295
[10]   Efficient electrocatalytic N2 reduction on CoO quantum dots [J].
Chu, Ke ;
Liu, Ya-ping ;
Li, Yu-biao ;
Zhang, Hu ;
Tian, Ye .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (09) :4389-4394