Wheat TaTIP4;1 Confers Enhanced Tolerance to Drought, Salt and Osmotic Stress in Arabidopsis and Rice

被引:14
|
作者
Wang, Yan [1 ]
Zhang, Yaqi [1 ]
An, Yinchao [1 ]
Wu, Jingyuan [1 ]
He, Shibin [1 ]
Sun, Lirong [1 ]
Hao, Fushun [1 ]
机构
[1] Henan Univ, Sch Life Sci, Coll Agr, State Key Lab Cotton Biol, Kaifeng 475004, Peoples R China
基金
中国国家自然科学基金;
关键词
wheat TaTIP4; 1; Arabidopsis; rice; seed germination; root growth; drought; salinity; osmotic stress; TONOPLAST AQUAPORIN; TRANSCRIPTION FACTORS; RESPONSES; GENE; PLANTS;
D O I
10.3390/ijms23042085
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Tonoplast aquaporins (intrinsic proteins, TIPs) have been indicated to play important roles in plant tolerance to water deficit and salinity. However, the functions of wheat TIPs in response to the stresses are largely unknown. In this study, we observed that transgenic plants overexpressing wheat TaTIP4;1 in Arabidopsis and rice displayed clearly enhanced seed germination and seedling growth under drought, salt and osmotic stress. Compared with wild type plants, Arabidopsis and rice overexpression lines had heightened water contents, reduced leaf water loss, lowered levels of Na+, Na+/K+, H2O2 and malondialdehyde, and improved activities of catalase and/or superoxide dismutase, and increased accumulation of proline under drought, salinity and/or osmotic stresses. Moreover, the expression levels of multiple drought responsive genes clearly elevated upon water dehydration, and the transcription of some salt responsive genes was markedly induced by NaCl treatment in the overexpression lines. Also, the yeast cells containing TaTIP4;1 showed increased tolerance to NaCl and mannitol, and mutation in one of three serines of TaTIP4;1 caused decreased tolerance to the two stresses. These results suggest that TaTIP4;1 serves as an essential positive regulator of seed germination and seedling growth under drought, salt and/or osmotic stress through impacting water relations, ROS balance, the accumulation of Na+ and proline, and stimulating the expression of dozens of stress responsive genes in Arabidopsis and rice. Phosphorylation may modulate the activity of TaTIP4;1.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Overexpression of Arabidopsis XERICO gene confers enhanced drought and salt stress tolerance in rice (Oryza Sativa L.)
    Zeng, De-Er
    Hou, Pei
    Xiao, Fangming
    Liu, Yongsheng
    JOURNAL OF PLANT BIOCHEMISTRY AND BIOTECHNOLOGY, 2015, 24 (01) : 56 - 64
  • [2] Overexpression of Arabidopsis XERICO gene confers enhanced drought and salt stress tolerance in rice (Oryza Sativa L.)
    De-Er Zeng
    Pei Hou
    Fangming Xiao
    Yongsheng Liu
    Journal of Plant Biochemistry and Biotechnology, 2015, 24 : 56 - 64
  • [3] OsHsfB4b Confers Enhanced Drought Tolerance in Transgenic Arabidopsis and Rice
    Zhang, Yan
    Wang, Chen
    Wang, Changyu
    Yun, Liu
    Song, Linhu
    Idrees, Muhammad
    Liu, Huiying
    Zhang, Qianlong
    Yang, Jingyu
    Zheng, Xu
    Zhang, Zhiyong
    Gao, Jie
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (18)
  • [4] Overexpression of SDH confers tolerance to salt and osmotic stress, but decreases ABA sensitivity in Arabidopsis
    Shi, X. -P.
    Ren, J. -J.
    Yu, Q.
    Zhou, S. -M.
    Ren, Q. -P.
    Kong, L. -J.
    Wang, X. -L.
    PLANT BIOLOGY, 2018, 20 (02) : 327 - 337
  • [5] Arabidopsis Enhanced Drought Tolerance1/HOMEODOMAIN GLABROUS11 Confers Drought Tolerance in Transgenic Rice without Yield Penalty
    Yu, Linhui
    Chen, Xi
    Wang, Zhen
    Wang, Shimei
    Wang, Yuping
    Zhu, Qisheng
    Li, Shigui
    Xiang, Chengbin
    PLANT PHYSIOLOGY, 2013, 162 (03) : 1378 - 1391
  • [6] Overexpression of Arabidopsis and Rice stress genes' inducible transcription factor confers drought and salinity tolerance to rice
    Datta, Karabi
    Baisakh, Niranjan
    Ganguly, Moumita
    Krishnan, Sellapan
    Shinozaki, Kazuko Yamaguchi
    Datta, Swapan K.
    PLANT BIOTECHNOLOGY JOURNAL, 2012, 10 (05) : 579 - 586
  • [7] Function of the wheat TaSIP gene in enhancing drought and salt tolerance in transgenic Arabidopsis and rice
    Hao-Yue Du
    Yin-Zhu Shen
    Zhan-Jing Huang
    Plant Molecular Biology, 2013, 81 : 417 - 429
  • [8] Function of the wheat TaSIP gene in enhancing drought and salt tolerance in transgenic Arabidopsis and rice
    Du, Hao-Yue
    Shen, Yin-Zhu
    Huang, Zhan-Jing
    PLANT MOLECULAR BIOLOGY, 2013, 81 (4-5) : 417 - 429
  • [9] MpNAC1, a transcription factor from the mangrove associate Millettia pinnata, confers salt and drought stress tolerance in transgenic Arabidopsis and rice
    Yang, Heng
    Zhang, Yi
    Lyu, Shanwu
    Liu, Yujuan
    Jian, Shuguang
    Deng, Shulin
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2024, 211
  • [10] SKIP Confers Osmotic Tolerance during Salt Stress by Controlling Alternative Gene Splicing in Arabidopsis
    Feng, Jinlin
    Li, Jingjing
    Gao, Zhaoxu
    Lu, Yaru
    Yu, Junya
    Zheng, Qian
    Yan, Shuning
    Zhang, Wenjiao
    He, Hang
    Ma, Ligeng
    Zhu, Zhengge
    MOLECULAR PLANT, 2015, 8 (07) : 1038 - 1052