Quasi-separable extensions of noncommutative rings

被引:3
作者
Komatsu, H [1 ]
机构
[1] Okayama Prefectural Univ, Fac Comp Sci & Syst Engn, Okayama 7191197, Japan
关键词
module of differentials; separable extension; skew polynomials ring;
D O I
10.1081/AGB-100001663
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the module of differentials of a separable ring extension vanishes. The result is applied to the theory of skew polynomials rings.
引用
收藏
页码:1011 / 1019
页数:9
相关论文
共 10 条
[1]  
AMITSUR SA, 1967, P LOND MATH SOC, V17, P470
[2]  
BOURBAKI N, 1970, ALGEBRE, V1, pCH1
[3]  
ELLIGER S, 1975, J REINE ANGEW MATH, V277, P155
[4]   ON SEMISIMPLE EXTENSIONS AND SEPARABLE EXTENSIONS OVER NON COMMUTATIVE RINGS [J].
HIRATA, K ;
SUGANO, K .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1966, 18 (04) :360-+
[5]   On the module of differentials of a noncommutative algebra and symmetric biderivations of a semiprime algebra [J].
Hongan, M ;
Komatsu, H .
COMMUNICATIONS IN ALGEBRA, 2000, 28 (02) :669-692
[6]  
MIYASHITA Y, 1966, J FAC SCI HOKKAIDO U, V19, P114
[7]  
NAGAHARA T, 1972, MATH J OKAYAMA U, V15, P149
[8]  
Nakai Y., 1961, J MATH SOC JAPAN, V13, P63, DOI DOI 10.2969/JMSJ/01310063
[9]  
NAKAJIMA A, 1994, B GREEK MATH SOC, V36, P113
[10]   RIGHT DERIVATIONS AND RIGHT DIFFERENTIAL-OPERATORS [J].
SWEEDLER, ME .
PACIFIC JOURNAL OF MATHEMATICS, 1980, 86 (01) :327-360