A metallic gas diffusion layer and porous media flow field for proton exchange membrane fuel cells

被引:12
|
作者
Zhang, Yinghui [1 ]
Tao, Youkun [1 ,3 ]
Ren, Hong [2 ]
Wu, Minhua [1 ]
Li, Guanguang [2 ]
Wan, Zhijian [1 ]
Shao, Jing [2 ]
机构
[1] Harbin Inst Technol, Sch Sci, Shenzhen 518055, Peoples R China
[2] Shenzhen Univ, Coll Chem & Environm Engn, Shenzhen 518060, Peoples R China
[3] Southern Univ Sci & Technol, Acad Adv Interdisciplinary Studies, Dept Mech & Energy Engn, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Metal foam; Porous media flow field; Microporous layer; Metallic gas diffusion layer; Proton exchange membrane fuel cell; MICROPOROUS LAYERS; BIPOLAR PLATES; NEXT-GENERATION; PERFORMANCE; PARAMETERS; CHANNEL; DESIGN; FOAM;
D O I
10.1016/j.jpowsour.2022.231847
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Recently, metal foams have been intensively studied to be used as alternative flow fields to the conventional channel-rib flow field in proton exchange membrane fuel cells (PEMFC) to enhance the uniformity of gas distribution and reduce the weight of fuel cells. This work demonstrates a simple and compact design at the cathode side for achieving effective electrons and gas transport in PEMFCs, which includes a porous metal foam flow media coated with a microporous layer (MPL) on its top to form one single hierarchical porous component functioning as both the gas distributor and diffusion media. With this low-cost and light-weight design, the conventional gas diffusion layer (GDL) can be eliminated. A comparative analysis of PEM fuel cell performances for the conventional carbon paper-based GDL and three metallic GDL designs containing different MPLs is conducted under varied stoichiometric ratios and relative humidity (RH). At 100% RH, the optimum performance is achieved on the CB/CNT MPL-coated metal foam, with the maximum power density increased by 21% than that of the conventional design when the stoichiometric ratio of air is 1.5. Under dry conditions (40% RH), all the metallic GDL structured cells outperform the conventional one at a low airflow rate (stoichiometric ratio = 1.5).
引用
收藏
页数:10
相关论文
共 50 条
  • [31] The effect of different gas diffusion layer porosity on proton exchange membrane fuel cells
    Turkmen, Anil Can
    Celik, Cenk
    FUEL, 2018, 222 : 465 - 474
  • [32] A fractal analytical model for the permeabilities of fibrous gas diffusion layer in proton exchange membrane fuel cells
    Xiao, Boqi
    Fan, Jintu
    Ding, Feng
    ELECTROCHIMICA ACTA, 2014, 134 : 222 - 231
  • [33] Effects of the carbon black properties in gas diffusion layer on the performance of proton exchange membrane fuel cells
    Wang, Xinyuan
    Liu, Yu-Ting
    Zhang, Xiao-Fang
    Song, Hongyan
    Wu, Gang-Ping
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (73) : 28528 - 28538
  • [34] Optimization of gas diffusion layer thickness for high-temperature proton exchange membrane fuel cells
    Huang, Taiming
    Yi, Dingxun
    Ren, Xun
    Ma, Jingmao
    Xiao, Yufan
    Ding, Wu
    Wan, Zhongmin
    Wang, Xiaodong
    Xie, Yijian
    Zeng, Wei
    IONICS, 2024, 30 (03) : 1511 - 1522
  • [35] Janus Gas Diffusion Layer for Enhanced Water Management in Proton Exchange Membrane Fuel Cells (PEMFCs)
    Wen, Qinglin
    Pan, Saifei
    Li, Yali
    Bai, Chuang
    Shen, Min
    Jin, Hanqing
    Ning, Fandi
    Fu, Xuwei
    Zhou, Xiaochun
    ACS ENERGY LETTERS, 2022, 7 (11) : 3900 - 3909
  • [36] Porous media flow field for polymer electrolyte membrane fuel cell: Depression of gas diffusion layer intrusion, deformation, and delamination
    Zheng, Bo
    Wang, Zhe
    Wang, Yun
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (14) : 20039 - 20049
  • [37] Numerical simulation of two-phase cross flow in the gas diffusion layer microstructure of proton exchange membrane fuel cells
    Niu, Zhiqiang
    Jiao, Kui
    Wang, Yun
    Du, Qing
    Yin, Yan
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2018, 42 (02) : 802 - 816
  • [38] Influence of gas diffusion layer on Pt catalyst prepared by electrodeposition for proton exchange membrane fuel cells
    Ruengkit, Chanakan
    Tantavichet, Nisit
    THIN SOLID FILMS, 2017, 636 : 116 - 126
  • [39] Effect of gas diffusion layer and membrane properties in an annular proton exchange membrane fuel cell
    Khazaee, I.
    Ghazikhani, M.
    Esfahani, M. Nasr
    APPLIED SURFACE SCIENCE, 2012, 258 (06) : 2141 - 2148
  • [40] Pore Network Modeling of Oxygen Diffusion in Gas diffusion Layer of Proton Exchange Membrane Fuel Cells
    Wu, R.
    Zhu, X.
    Liao, Q.
    Wang, H.
    Ding, Y. D.
    MNHMT2009, VOL 2, 2010, : 307 - 312