A metallic gas diffusion layer and porous media flow field for proton exchange membrane fuel cells

被引:12
|
作者
Zhang, Yinghui [1 ]
Tao, Youkun [1 ,3 ]
Ren, Hong [2 ]
Wu, Minhua [1 ]
Li, Guanguang [2 ]
Wan, Zhijian [1 ]
Shao, Jing [2 ]
机构
[1] Harbin Inst Technol, Sch Sci, Shenzhen 518055, Peoples R China
[2] Shenzhen Univ, Coll Chem & Environm Engn, Shenzhen 518060, Peoples R China
[3] Southern Univ Sci & Technol, Acad Adv Interdisciplinary Studies, Dept Mech & Energy Engn, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Metal foam; Porous media flow field; Microporous layer; Metallic gas diffusion layer; Proton exchange membrane fuel cell; MICROPOROUS LAYERS; BIPOLAR PLATES; NEXT-GENERATION; PERFORMANCE; PARAMETERS; CHANNEL; DESIGN; FOAM;
D O I
10.1016/j.jpowsour.2022.231847
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Recently, metal foams have been intensively studied to be used as alternative flow fields to the conventional channel-rib flow field in proton exchange membrane fuel cells (PEMFC) to enhance the uniformity of gas distribution and reduce the weight of fuel cells. This work demonstrates a simple and compact design at the cathode side for achieving effective electrons and gas transport in PEMFCs, which includes a porous metal foam flow media coated with a microporous layer (MPL) on its top to form one single hierarchical porous component functioning as both the gas distributor and diffusion media. With this low-cost and light-weight design, the conventional gas diffusion layer (GDL) can be eliminated. A comparative analysis of PEM fuel cell performances for the conventional carbon paper-based GDL and three metallic GDL designs containing different MPLs is conducted under varied stoichiometric ratios and relative humidity (RH). At 100% RH, the optimum performance is achieved on the CB/CNT MPL-coated metal foam, with the maximum power density increased by 21% than that of the conventional design when the stoichiometric ratio of air is 1.5. Under dry conditions (40% RH), all the metallic GDL structured cells outperform the conventional one at a low airflow rate (stoichiometric ratio = 1.5).
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Gas Diffusion Layer for Proton Exchange Membrane Fuel Cells: A Review
    Guo, Hui
    Chen, Lubing
    Ismail, Sara Adeeba
    Jiang, Lulu
    Guo, Shihang
    Gu, Jie
    Zhang, Xiaorong
    Li, Yifeng
    Zhu, Yuwen
    Zhang, Zihan
    Han, Donglin
    MATERIALS, 2022, 15 (24)
  • [2] Gas diffusion layer for proton exchange membrane fuel cells-A review
    Cindrella, L.
    Kannan, A. M.
    Lin, J. F.
    Saminathan, K.
    Ho, Y.
    Lin, C. W.
    Wertz, J.
    JOURNAL OF POWER SOURCES, 2009, 194 (01) : 146 - 160
  • [3] Fabrication of porous metal fiber sintered sheet as a flow field for proton exchange membrane fuel cell
    Li, Shuangli
    Zhou, Wei
    Liu, Ruiliang
    Huang, Jiale
    Chu, Xuyang
    CURRENT APPLIED PHYSICS, 2020, 20 (05) : 686 - 695
  • [4] Investigation on performance of full-scale proton exchange membrane fuel cell: Porous foam flow field with integrated bipolar plate/gas diffusion layer
    Zhang, Yong
    He, Shirong
    Jiang, Xiaohui
    Wang, Zhuo
    Yang, Xi
    Fang, Haoyan
    Li, Qiming
    Cao, Jing
    ENERGY, 2024, 287
  • [5] Evaluation Criterion of Proton Exchange Membrane (ECPEM) fuel cells considering inserted porous media inside the gas flow channel
    Pourrahmani, Hossein
    Van Herle, Jan
    APPLIED THERMAL ENGINEERING, 2022, 203
  • [6] A review of the gas diffusion layer in proton exchange membrane fuel cells: Durability and degradation
    Park, Jaeman
    Oh, Hwanyeong
    Ha, Taehun
    Lee, Yoo Il
    Min, Kyoungdoug
    APPLIED ENERGY, 2015, 155 : 866 - 880
  • [7] Carbon film coating on gas diffusion layer for proton exchange membrane fuel cells
    Lin, Jui-Hsiang
    Chen, Wei-Hung
    Su, Shih-Hsuan
    Liao, Yuan-Kai
    Ko, Tse-Hao
    JOURNAL OF POWER SOURCES, 2008, 184 (01) : 38 - 43
  • [8] Study on hydrophobicity degradation of gas diffusion layer in proton exchange membrane fuel cells
    Yu, Shuchun
    Li, Xiaojin
    Li, Jin
    Liu, Sa
    Lu, Wangting
    Shao, Zhigang
    Yi, Baolian
    ENERGY CONVERSION AND MANAGEMENT, 2013, 76 : 301 - 306
  • [9] Antimony doped tin oxide applied in the gas diffusion layer for proton exchange membrane fuel cells
    Hao, Jinkai
    Yu, Shuchun
    Jiang, Yongyi
    Li, Xiaojin
    Shao, Zhigang
    Yi, Baolian
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2015, 756 : 201 - 206
  • [10] Water transport characteristics in the gas diffusion media of proton exchange membrane fuel cell - Role of the microporous layer
    Nishiyama, Enju
    Murahashi, Toshiaki
    JOURNAL OF POWER SOURCES, 2011, 196 (04) : 1847 - 1854