Detour Number of 1-Fault Connected Graphs

被引:0
作者
Raghu, T. Venkata [1 ]
Rajan, R. Sundara [1 ]
Babu, A. Ramesh [1 ]
Anil, S. [2 ]
机构
[1] Hindustan Inst Technol & Sci, Dept Math, Chennai 603103, Tamil Nadu, India
[2] Hindustan Inst Technol & Sci, Dept Comp Sci & Engn, Chennai 603103, Tamil Nadu, India
关键词
Geodetic number; detour set; detour number; 1-fault connected graphs; Hanoi graph; Sierpinski graph; GEODETIC NUMBER;
D O I
10.3233/FI-2020-1894
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A subset S of a connected graph G of order n is called a detour set of G if for every vertex x in G there exist vertices u, v in S such that x lie on a u - v detour path. The detour number dn(G) of a graph G is the minimum cardinality of a detour set. In this paper we compute the detour number of certain 1-fault connected planar graphs.
引用
收藏
页码:97 / 104
页数:8
相关论文
共 15 条
[1]  
Buckley F., 1990, Distance in Graphs
[2]  
Chartrand G, 2004, ARS COMBINATORIA, V72, P3
[3]  
Chartrand G, 2003, UTILITAS MATHEMATICA, V64, P97
[4]   On the geodetic number of a graph [J].
Chartrand, G ;
Harary, F ;
Zhang, P .
NETWORKS, 2002, 39 (01) :1-6
[5]  
Chartrand G., 2005, Journal of Combinatorial Mathematics and Combinatorial Computing, V53, P75
[6]  
Chartrand G., 2004, AKCE international journal of graphs and combinatorics, V1, P1, DOI [10.1080/09728600.2004.12088775, DOI 10.1080/09728600.2004.12088775]
[7]   THE GEODETIC NUMBER OF A GRAPH [J].
HARARY, F ;
LOUKAKIS, E ;
TSOUROS, C .
MATHEMATICAL AND COMPUTER MODELLING, 1993, 17 (11) :89-95
[8]  
Harary F., 1994, Graph Theory
[9]  
Hsu LH, 2008, GRAPH THEORY IINTERC
[10]   Crossing numbers of Sierpinski-like graphs [J].
Klavzar, S ;
Mohar, B .
JOURNAL OF GRAPH THEORY, 2005, 50 (03) :186-198