On the period function of x"+f(x)x′2+g(x)=0

被引:60
作者
Sabatini, M [1 ]
机构
[1] Univ Trent, Dipartimento Matemat, Trent, Italy
关键词
center; period function; monotonicity; polynomial systems;
D O I
10.1016/S0022-0396(03)00067-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the period function T of a center O of the title's equation. A sufficient condition for the monotonicity of T, or for the isochronicity of O, is given. Such a condition is also necessary, when f and g are odd and analytic. In this case a characterization of isochronous centers is given. Some classes of plane systems equivalent to such equation are considered, including some Kukles' systems. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:151 / 168
页数:18
相关论文
共 14 条
[1]   Isochronicity via normal form [J].
Algaba A. ;
Freire E. ;
Gamero E. .
Qualitative Theory of Dynamical Systems, 2000, 1 (2) :133-156
[2]  
Chavarriga J., 1999, QUAL THEORY DYN SYST, V1, P1, DOI DOI 10.1007/BF02969404
[4]  
CHOUIKHA R, 1999, APPL MATH, V26, P243
[5]  
CHOW SN, 1986, CASOPIS PEST MAT, V11, P14
[6]  
CHRISTOPHER CJ, 1998, CLASSIFICATION LIENA
[7]   Period function for a class of Hamiltonian systems [J].
Cima, A ;
Gasull, A ;
Mañosas, F .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2000, 168 (01) :180-199
[8]  
FREIRE E, 2001, 1 DERIVATIVE PERIOD
[9]  
Jacobson N., 1974, BASIC ALGEBRA, VI
[10]  
MAZZI L, 2000, REND MAT ACCAD LINCE, V11, P81