Investigation on effect of phase change material on the thermal runaway of lithium-ion battery and exploration of flame retardancy improvement

被引:80
作者
Dai, Xinyi [1 ]
Kong, Depeng [1 ]
Du, Jin [1 ]
Zhang, Yue [1 ]
Ping, Ping [2 ]
机构
[1] China Univ Petr East China, Ctr Offshore Engn & Safety Technol, Qingdao 266580, Peoples R China
[2] China Univ Petr East China, Coll Chem Engn, Qingdao 266580, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium -ion battery; Thermal runaway; Phase change material; Fire hazards; Flame retardant; Heat release rate; MANAGEMENT-SYSTEM; HEAT SINKS; FIRE; PERFORMANCE; MODULE; OPTIMIZATION; PROPAGATION; BEHAVIOR; PACK; COMBUSTION;
D O I
10.1016/j.psep.2021.12.051
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Thermal safety is important for the process of storage and utilization of lithium-ion battery. Once battery thermal runaway (TR) happens, accidents are difficult to avoid. As a cooling medium for battery thermal management, phase change material (PCM) can effectively maintain the temperature under normal operations. However, the flammability of PCM makes it doubtful to work safely under extreme conditions like TR. Herein, several sets of TR experiments have been conducted on 18650 batteries covered without and with different PCMs. Paraffin PCM (PPCM) and composite PCM (CPCM) are considered to explore their effects on TR. Results demonstrate that PPCM delays the onset of TR by 277 s and lowers the battery temperature utilizing its heat absorption while CPCM has little effect. However, flammable PPCM increases the heat release significantly which brings great fire risk. Based on the foregoing, a flame-retarded PPCM mixed with hydroxide flame-retardant proved to relieve the adverse effects of PPCM as well as maintain the performance for inhibiting TR. Results show that the addition of flame retardants reduces the peak heat release rate from 29 kW to 15.5 kW, which gives guidance in the process safety assurance and fire protection design in a real engineering application of battery thermal management. (c) 2021 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:232 / 242
页数:11
相关论文
共 50 条
  • [31] Effect of High Temperature Circumstance on Lithium-Ion Battery and the Application of Phase Change Material
    Ouyang, Dongxu
    Weng, Jingwen
    Hu, Jianyao
    Liu, Jiahao
    Chen, Mingyi
    Huang, Que
    Wang, Jian
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (04) : A559 - A567
  • [32] Phase change materials for lithium-ion battery thermal management systems: A review
    Li, Zaichao
    Zhang, Yuang
    Zhang, Shufen
    Tang, Bingtao
    JOURNAL OF ENERGY STORAGE, 2024, 80
  • [33] Kinetic modelling of thermal decomposition in lithium-ion battery components during thermal runaway
    Sadeghi, Hosein
    Restuccia, Francesco
    JOURNAL OF POWER SOURCES, 2025, 629
  • [34] Visual and thermal imaging of lithium-ion battery thermal runaway induced by mechanical impact
    Said, Mohamad Syazarudin Md
    Tohir, Mohd Zahirasri Mohd
    JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2022, 79
  • [35] Lithium-ion battery thermal management for electric vehicles using phase change material: A review
    Mahmud, Md
    Rahman, Kazi Sajedur
    Rokonuzzaman, Md.
    Habib, A. K. M. Ahasan
    Islam, Md Rafiqul
    Motakabber, S. M. A.
    Channumsin, Sittiporn
    Chowdhury, Shahariar
    RESULTS IN ENGINEERING, 2023, 20
  • [36] Performance analysis of a novel thermal management system with composite phase change material for a lithium-ion battery pack
    Wang, Xiaoming
    Xie, Yongqi
    Day, Rodney
    Wu, Hongwei
    Hu, Zhongliang
    Zhu, Jianqin
    Wen, Dongsheng
    ENERGY, 2018, 156 : 154 - 168
  • [37] Flame retardant composite phase change materials with MXene for lithium-ion battery thermal management systems
    Wang, Yuqi
    Zhao, Luyao
    Zhan, Wang
    Chen, Yin
    Chen, Mingyi
    JOURNAL OF ENERGY STORAGE, 2024, 86
  • [38] A Thermal Design and Experimental Investigation for the Fast Charging Process of a Lithium-Ion Battery Module With Liquid Cooling
    Chen, Siqi
    Bao, Nengsheng
    Peng, Xiongbin
    Garg, Akhil
    Chen, Zhanglin
    JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2020, 17 (02)
  • [39] Battery material thermal instability and side reaction for lithium-ion battery thermal runaway: A short review
    Ding, Yan
    Lu, Li
    Zhang, Huangwei
    FUNCTIONAL MATERIALS LETTERS, 2023, 16 (03N04)
  • [40] Influence of battery cell spacing on thermal performance of phase change material filled lithium-ion battery pack
    Patel, Jay R.
    Rathod, Manish K.
    ENERGY, 2024, 291