Screening of cowpea (Vigna unguiculata (L.) Walp.) genotypes for waterlogging tolerance using morpho-physiological traits at early growth stage

被引:28
|
作者
Olorunwa, Omolayo J. [1 ]
Adhikari, Bikash [1 ]
Shi, Ainong [2 ]
Barickman, T. Casey [1 ]
机构
[1] Mississippi State Univ, North Mississippi Res & Extens Ctr, Dept Plant & Soil Sci, Verona, MS 38879 USA
[2] Univ Arkansas, Dept Hort, PTSC 316, Fayetteville, AR 72701 USA
关键词
Stomatal conductance; Photosynthetic rate; Chlorophyll fluorescence; Waterlogging tolerance coefficient; SEASON GRAIN LEGUMES; PHOTOSYNTHETIC ELECTRON-TRANSPORT; CHLOROPHYLL FLUORESCENCE; PHYSIOLOGICAL-RESPONSES; NITROGEN-FIXATION; STRESS; YIELD; CULTIVARS; DROUGHT; PLANTS;
D O I
10.1016/j.plantsci.2021.111136
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The majority of cowpea (Vigna unguiculata (L.) Walp.) produced in the U.S. is planted shortly after the summer rains and subsequently depends on rain or artificial irrigation. Therefore, excessive precipitation and poor soil drainage will cause cowpea plants to suffer temporary waterlogging, reducing the submerged tissue's oxygen level. Although cowpea is sensitive to waterlogging, excessive moisture can induce several morpho-physiological changes with adverse impacts on yield in its early stages of development. The current study subjected 30 cowpea genotypes to 10-days of waterlogging at the seedling stage under a controlled environment. The dynamic changes of 24 morpho-physiological parameters under waterlogging and optimal water conditions were analyzed to understand cowpea's response to waterlogging. Significant waterlogging treatment, cowpea genotypes, and their interactions (P < 0.001) were observed for most of the measured parameters. The results indicated that plant height (PH), leaf area (LA), fresh (FW) and dry weight (DW) of cowpea genotypes were significantly decreased under waterlogging compared to the control treatments. Similar results were obtained for net photosynthesis (P-n), stomatal conductance (g(s)), intercellular CO2 concentration (C-j), and transpiration rate (E). However, the water use efficiency (WUE) and adventitious roots (ARs) increased linearly under waterlogging conditions. Waterlogging also declined chlorophyll fluorescence parameters except non-photochemical quenching (qN), which increased with excess soil moisture. In addition, waterlogging tolerance coefficient (WTC) and multivariate analysis (MCA) methods were used to characterize cowpea genotypes for waterlogging tolerance. Accordingly, the cowpea genotype Dagupan Pangasinan, UCR 369, and Negro were classified as waterlogging tolerant, while EpicSelect.4 and ICARDA 140071, as the most waterlogging sensitive. The cowpea genotypes and morpho-physiological traits determined from this study may be useful for genetic engineering and breeding programs that integrate cowpea waterlogging tolerance.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Genetic analysis of yield component traits in cowpea [Vigna unguiculata (L.) Walp.]
    dos Santos, Samiria Pinheiro
    Araujo, Mauricio dos Santos
    Lelis de Aragao, Walter Frazao
    Damasceno-Silva, Kaesel Jackson
    Rocha, Maurisrael de Moura
    CROP BREEDING AND APPLIED BIOTECHNOLOGY, 2024, 24 (01):
  • [22] Anthocyanins in cowpea [Vigna unguiculata (L.) Walp. ssp. unguiculata]
    Tae Joung Ha
    Myoung-Hee Lee
    Yu Na Jeong
    Jin Hwan Lee
    Sang-Ik Han
    Chang-Hwan Park
    Suk-Bok Pae
    Chung-Dong Hwang
    In-Youl Baek
    Keum-Yong Park
    Food Science and Biotechnology, 2010, 19 : 821 - 826
  • [23] Assessment of Cowpea (Vigna unguiculata (L.) Walp.) Mutant Lines for Drought Tolerance
    Gnankambary, Karidiatou
    Sawadogo, Nerbewende
    Dieni, Zakaria
    Batieno, Teyoure Benoit Joseph
    Tignegre, Jean Baptiste De Salle
    Sawadogo, Mahamadou
    Ouedraogo, Tinga Jeremy
    INTERNATIONAL JOURNAL OF AGRONOMY, 2020, 2020
  • [24] Evaluation of cowpea (Vigna unguiculata (L.) Walp.) germplasm lines for tolerance to drought
    Fatokun, Christian A.
    Boukar, Ousmane
    Muranaka, Satoru
    PLANT GENETIC RESOURCES-CHARACTERIZATION AND UTILIZATION, 2012, 10 (03): : 171 - 176
  • [25] Screening of Cowpea Genotypes for Waterlogging Tolerance using Morphophysiological Traits at the Early Growth Stage
    Olorunwa, Omolayo J.
    Adhikari, Bikash
    Shi, Ainong
    Barickman, T. Casey
    HORTSCIENCE, 2022, 57 (09) : S262 - S262
  • [26] Waterlogging during the reproductive growth stage causes physiological and biochemical modifications in the leaves of cowpea (Vigna unguiculata L.) genotypes with contrasting tolerance
    Olorunwa, Omolayo J.
    Adhikari, Bikash
    Brazel, Skyler
    Popescu, Sorina C.
    Popescu, George V.
    Shi, Ainong
    Barickman, T. Casey
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2022, 190 : 133 - 144
  • [27] Genetics of juvenile phase in cowpea [Vigna unguiculata (L.) Walp.]
    Ishiyaku, Mohammad F.
    Singh, Bir B.
    JOURNAL OF FOOD AGRICULTURE & ENVIRONMENT, 2003, 1 (3-4): : 133 - 136
  • [28] Ethnobotanical study of cowpea (Vigna unguiculata (L.) Walp.) in Senegal
    Sarr, Awa
    Bodian, Amy
    Gueye, Mame Codou
    Gueye, Badara
    Kanfany, Ghislain
    Diatta, Cyril
    Bougma, Lardia Ali
    Diop, Elisabeth A. M. C.
    Cisse, Ndiaga
    Diouf, Diaga
    Leclerc, Christian
    JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE, 2022, 18 (01)
  • [29] Allozyme diversity of cultivated cowpea Vigna unguiculata (L.) Walp.
    R. S. Pasquet
    Theoretical and Applied Genetics, 2000, 101 : 211 - 219
  • [30] Allozyme diversity of cultivated cowpea Vigna unguiculata (L.) Walp.
    Pasquet, RS
    THEORETICAL AND APPLIED GENETICS, 2000, 101 (1-2) : 211 - 219