Striped sheets and protein contact prediction

被引:53
作者
MacCallum, Robert M. [1 ]
机构
[1] Stockholm Univ, Stockholm Bioinformat Ctr, S-10691 Stockholm, Sweden
关键词
D O I
10.1093/bioinformatics/bth913
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Current approaches to contact map prediction in proteins have focused on amino acid conservation and patterns of mutation at sequentially distant positions. This sequence information is poorly understood and very little progress has been made in this area during recent years. Results: In this study, an observation of 'striped' sequence patterns across beta-sheets prompted the development of a new type of contact map predictor. Computer program code was evolved with an evolutionary algorithm (genetic programming) to select residues and residue pairs likely to make contacts based solely on local sequence patterns extracted with the help of self-organizing maps. The mean prediction accuracy is 27% on a validation set of 156 domains up to 400 residues in length, where contacts are separated by at least 8 residues and length/10 pairs are predicted. The retrospective accuracy on a set of 15 CASP5 targets is 27% and 14% for length/10 and length/2 predicted pairs, respectively (both using a minimum residue separation of 24). This compares favourably to the equivalent 21% and 13% obtained for the best automated contact prediction methods at CASP5. The results suggest that protein architectures impose regularities in local sequence environments. Other sources of information, such as correlated/compensatory mutations, may further improve accuracy.
引用
收藏
页码:224 / 231
页数:8
相关论文
共 31 条
[1]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[2]   A METHOD TO IDENTIFY PROTEIN SEQUENCES THAT FOLD INTO A KNOWN 3-DIMENSIONAL STRUCTURE [J].
BOWIE, JU ;
LUTHY, R ;
EISENBERG, D .
SCIENCE, 1991, 253 (5016) :164-170
[3]   The ASTRAL compendium for protein structure and sequence analysis [J].
Brenner, SE ;
Koehl, P ;
Levitt, R .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :254-256
[4]   Prediction of local structure in proteins using a library of sequence-structure motifs [J].
Bystroff, C ;
Baker, D .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 281 (03) :565-577
[5]   HMMSTR: a hidden Markov model for local sequence-structure correlations in proteins [J].
Bystroff, C ;
Thorsson, V ;
Baker, D .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 301 (01) :173-190
[6]   X-ray structure of Novamyl, the five-domain "maltogenic" α-amylase from Bacillus stearothermophilus:: Maltose and acarbose complexes at 1.7 Å resolution [J].
Dauter, Z ;
Dauter, M ;
Brzozowski, AM ;
Christensen, S ;
Borchert, TV ;
Beier, L ;
Wilson, KS ;
Davies, GJ .
BIOCHEMISTRY, 1999, 38 (26) :8385-8392
[7]   CAFASP3 in the spotlight of EVA [J].
Eyrich, VA ;
Przybylski, D ;
Koh, IYY ;
Grana, O ;
Pazos, F ;
Valencia, A ;
Rost, B .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2003, 53 :548-560
[8]   EVA:: continuous automatic evaluation of protein structure prediction servers [J].
Eyrich, VA ;
Martí-Renom, MA ;
Przybylski, D ;
Madhusudhan, MS ;
Fiser, A ;
Pazos, F ;
Valencia, A ;
Sali, A ;
Rost, B .
BIOINFORMATICS, 2001, 17 (12) :1242-1243
[9]   Prediction of contact maps with neural networks and correlated mutations [J].
Fariselli, P ;
Olmea, O ;
Valencia, A ;
Casadio, R .
PROTEIN ENGINEERING, 2001, 14 (11) :835-843
[10]   Detecting compensatory covariation signals in protein evolution using reconstructed ancestral sequences [J].
Fukami-Kobayashi, K ;
Schreiber, DR ;
Benner, SA .
JOURNAL OF MOLECULAR BIOLOGY, 2002, 319 (03) :729-743