The dynamical properties of Penrose tilings

被引:47
作者
Robinson, EA
机构
关键词
tilings; topological dynamics; almost periodicity;
D O I
10.1090/S0002-9947-96-01640-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The set of Penrose tilings, when provided with a natural compact metric topology, becomes a strictly ergodic dynamical system under the action of R(2) by translation. We show that this action is an almost 1:1 extension of a minimal R(2) action by rotations on T-4, i.e., it is an R(2) generalization of a Sturmian dynamical system. We also show that the inflation mapping is an almost 1:1 extension of a hyperbolic automorphism on T-4. The local topological structure of the set of Penrose tilings is described, and some generalizations are discussed.
引用
收藏
页码:4447 / 4464
页数:18
相关论文
共 19 条
[1]  
[Anonymous], 1990, HUYGENS BARROW NEWTO, DOI DOI 10.1007/978-3-0348-9129-5
[2]  
Cahn J. W., 1987, CONT MATH, V64, P265
[3]  
Connes A., 1994, NONCOMMUTATIVE GEOME
[4]  
DEBRUIJN NG, 1981, P K NED AKAD A MATH, V84, P39
[5]  
GOTTSCHALK W, 1955, C PUBLICATION, V36
[6]  
Gottschalk W. H., 1944, B AM MATH SOC, V50, P915
[7]  
Gr?nbaum B., 1987, TILINGS PATTERNS
[8]  
Ireland K., 1982, CLASSICAL INTRO MODE, DOI DOI 10.1007/978-1-4757-1779-2
[9]   TILINGS, SUBSTITUTION SYSTEMS AND DYNAMICAL-SYSTEMS GENERATED BY THEM [J].
MOZES, S .
JOURNAL D ANALYSE MATHEMATIQUE, 1989, 53 :139-186
[10]   A CLASSIFICATION OF TWO-DIMENSIONAL QUASI-PERIODIC TILINGS OBTAINED WITH THE GRID METHOD [J].
NIIZEKI, K .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (16) :3333-3345