Multiple-set split feasibility problems for total asymptotically strict pseudocontractions mappings

被引:8
作者
Yang, Li [1 ]
Chang, Shih-Sen [2 ]
Cho, Yeol J. E. [3 ]
Kim, Jong K. Y. U. [4 ]
机构
[1] SW Univ Sci & Technol, Dept Math, Mianyang 621010, Sichuan, Peoples R China
[2] Yunnan Univ Finance & Econ, Coll Stat & Math, Kunming 650221, Yunnan, Peoples R China
[3] Rins Gyeongsang Natl Univ, Dept Math Educ, Jinju 660701, South Korea
[4] Kyungnam Univ Masan, Dept Math Educ, Kyungnam 631701, South Korea
来源
FIXED POINT THEORY AND APPLICATIONS | 2011年
关键词
multiple-set split feasibility problem; split feasibility problem; demi-closeness; Opial condition; total asymptotically strict pseudocontraction; COMMON FIXED-POINTS; APPROXIMATION; CONVERGENCE; ALGORITHM; THEOREMS;
D O I
10.1186/1687-1812-2011-77
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this article is to propose and investigate an algorithm for solving the multiple-set split feasibility problems for total asymptotically strict pseu-docontractions mappings in infinite-dimensional Hilbert spaces. The results presented in this article improve and extend some recent results of A. Moudafi, H. K. Xu, Y. Censor, A. Segal, T. Elfving, N. Kopf, T. Bortfeld, X. A. Motova, Q. Yang, A. Gibali, S. Reich and others. 2000 AMS Subject Classification: 47J05; 47H09; 49J25.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 23 条
[1]  
Alber Y., 2001, Analysis, V21, P17, DOI DOI 10.1524/ANLY.2001.21.1.17
[2]   Approximating fixed points of total asymptotically nonexpansive mappings [J].
Alber, Ya. I. ;
Chidume, C. E. ;
Zegeye, H. .
FIXED POINT THEORY AND APPLICATIONS, 2006, 2006 (1)
[3]   Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space [J].
Aoyama, Koji ;
Kimura, Yasunori ;
Takahashi, Wataru ;
Toyoda, Masashi .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (08) :2350-2360
[4]   CONSTRUCTION OF FIXED POINTS OF NONLINEAR MAPPINGS IN HILBERT SPACE [J].
BROWDER, FE ;
PETRYSHY.WV .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1967, 20 (02) :197-&
[6]   The multiple-sets split feasibility problem and its applications for inverse problems [J].
Censor, Y ;
Elfving, T ;
Kopf, N ;
Bortfeld, T .
INVERSE PROBLEMS, 2005, 21 (06) :2071-2084
[7]  
Censor Y., 1994, Numerical Algorithms, V8, P221, DOI DOI 10.1007/BF02142692
[8]  
Censor Y, NUMER ALGOR IN PRESS
[9]  
Censor Y, 2009, J CONVEX ANAL, V16, P587
[10]   A unified approach for inversion problems in intensity-modulated radiation therapy [J].
Censor, Yair ;
Bortfeld, Thomas ;
Martin, Benjamin ;
Trofimov, Alexei .
PHYSICS IN MEDICINE AND BIOLOGY, 2006, 51 (10) :2353-2365