Variation of self-imaging length in multimode waveguides beyond the paraxial approximation

被引:3
作者
Deb, Subimal [1 ]
Sadhukhan, Dhrubajyoti [2 ]
Panigrahi, Prasanta K. [1 ]
机构
[1] Indian Inst Sci Educ & Res Kolkata, Dept Phys Sci, Mohanpur 741246, India
[2] Indian Inst Sci Educ & Res Kolkata, Mohanpur 741246, India
关键词
TALBOT; DYNAMICS; CARPETS; MAXWELL; OPTICS;
D O I
10.1364/OL.454803
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We demonstrate the precise variation of self-imaging distance with width of a Gaussian input, centrally fed into a symmetric dielectric slab waveguide of width similar to 20 lambda(0). The width of the Gaussian is varied from the paraxial to completely nonparaxial domain. Unlike the paraxial case, the self-imaging distance is found to depend on the beam width and change with the number of excited modes in the waveguide. These features should be useful in designing devices that exploit self-imaging for improved efficiency, especially in nanophotonic circuits. (C) 2022 Optica Publishing Group
引用
收藏
页码:1733 / 1736
页数:4
相关论文
共 49 条
[31]   Aberration-like cusped focusing in the post-paraxial Talbot effect [J].
Ring, James D. ;
Lindberg, Jari ;
Howls, Christopher J. ;
Dennis, Mark R. .
JOURNAL OF OPTICS, 2012, 14 (07)
[32]   Quantum wave packet revivals [J].
Robinett, RW .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2004, 392 (1-2) :1-119
[33]  
Roy A. K., 2021, ARXIV210414338
[34]   GAUSSIAN-MAXWELL BEAMS [J].
SIMON, R ;
SUDARSHAN, ECG ;
MUKUNDA, N .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1986, 3 (04) :536-540
[35]   Photonic quantum information processing: A concise review [J].
Slussarenko, Sergei ;
Pryde, Geoff J. .
APPLIED PHYSICS REVIEWS, 2019, 6 (04)
[36]   OPTICAL MULTIMODE INTERFERENCE DEVICES BASED ON SELF-IMAGING - PRINCIPLES AND APPLICATIONS [J].
SOLDANO, LB ;
PENNINGS, ECM .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 1995, 13 (04) :615-627
[37]   PARAXIAL-WAVE OPTICS AND RELATIVISTIC FRONT DESCRIPTION .1. THE SCALAR THEORY [J].
SUDARSHAN, ECG ;
SIMON, R ;
MUKUNDA, N .
PHYSICAL REVIEW A, 1983, 28 (05) :2921-2932
[38]  
Talbot H. F., 1836, Philos. Mag., V9, P401, DOI [DOI 10.1080/14786443608649032, 10.1080/14786443608649032]
[39]  
Thomas J.W., 2013, Numerical partial differential equations: finite difference methods, V22
[40]  
Virtanen P, 2020, NAT METHODS, V17, P261, DOI 10.1038/s41592-019-0686-2